

AoPS Community

2005 Harvard-MIT Mathematics Tournament

Harvard-MIT Mathematics Tournament 2005
www.artofproblemsolving.com/community/c3623

by ahaanomegas

-	Algebra
1	How many real numbers x are solutions to the following equation?
	x - 1 = x - 2 + x - 3
2	How many real numbers x are solutions to the following equation?
	$2003^x + 2004^x = 2005^x$
	Lat may and man distinct real numbers that sum to 0. Find the maximum pessible value of
3	Let x, y, and z be distinct real numbers that sum to 0. Find the maximum possible value of $xu + uz + zx$
	$\frac{xy+yz+zx}{x^2+y^2+z^2}.$
4	If $a, b, c > 0$, what is the smallest possible value of $\left\lfloor \frac{a+b}{c} \right\rfloor + \left\lfloor \frac{b+c}{a} \right\rfloor + \left\lfloor \frac{c+a}{b} \right\rfloor$? (Note that $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x .)
5	Ten positive integers are arranged around a circle. Each number is one more than the greatest common divisor of its two neighbors. What is the sum of the ten numbers?
6	Find the sum of the x-coordinates of the distinct points of intersection of the plane curves given by $x^2 = x + y + 4$ and $y^2 = y - 15x + 36$.
7	Let x be a positive real number. Find the maximum possible value of
	$x^2 + 2 - \sqrt{x^4 + 4}$
	${x}$.
8	Compute $\sum_{n=1}^{\infty} n$

AoPS Community

2005 Harvard-MIT Mathematics Tournament

- **9** The number 27, 000, 001 has exactly four prime factors. Find their sum.
- **10** Find the sum of the absolute values of the roots of $x^4 4x^3 4x^2 + 16x 8 = 0$.
- Calculus
- 1 Let $f(x) = x^3 + ax + b$, with $a \neq b$, and suppose the tangent lines to the graph of f at x = a and x = b are parallel. Find f(1).
- **2** A plane curve is parameterized by $x(t) = \int_t^\infty \frac{\cos u}{u} du$ and $y(t) = \int_t^\infty \frac{\sin u}{u} du$ for $1 \le t \le 2$. What is the length of the curve?
- **3** Let $f : \mathbf{R} \to \mathbf{R}$ be a continuous function with $\int_0^1 f(x) f'(x) \, dx = 0$ and $\int_0^1 f(x)^2 f'(x) \, dx = 18$. What is $\int_0^1 f(x)^4 f'(x) \, dx$?
- 4 Let $f : \mathbf{R} \to \mathbf{R}$ be a smooth function such that $f'(x)^2 = f(x)f''(x)$ for all x. Suppose f(0) = 1 and $f^{(4)}(0) = 9$. Find all possible values of f'(0).
- 5 Calculate

$$\lim_{x \to 0^+} \left(x^{x^x} - x^x \right).$$

- 6 The graph of $r = 2 + \cos 2\theta$ and its reflection over the line y = x bound five regions in the plane. Find the area of the region containing the origin.
- 7 Two ants, one starting at (-1, 1), the other at (1, 1), walk to the right along the parabola $y = x^2$ such that their midpoint moves along the line y = 1 with constant speed 1. When the left ant first hits the line $y = \frac{1}{2}$, what is its speed?

8 If *f* is a continuous real function such that $f(x-1) + f(x+1) \ge x + f(x)$ for all *x*, what is the minimum possible value of $\int_{1}^{2005} f(x) dx$?

9 Compute

$$\sum_{k=0}^{\infty} \frac{4}{(4k)!}$$

AoPS Community

2005 Harvard-MIT Mathematics Tournament

10	Let $f : \mathbf{R} \to \mathbf{R}$ be a smooth function such that $f'(x) = f(1-x)$ for all x and $f(0) = 1$. Find $f(1)$.
-	Combinatorics
-	General Part 1
-	General Part 2
-	Geometry
-	Guts
_	Team A
-	Team B

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.