

### **AoPS Community**

## 2010 Harvard-MIT Mathematics Tournament

#### Harvard-MIT Mathematics Tournament 2010

www.artofproblemsolving.com/community/c3628 by djmathman

| - | Algebra                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Suppose that $x$ and $y$ are positive reals such that                                                                                                                                                                                                                                                                                                                                                                                                |
|   | $x - y^2 = 3,$ $x^2 + y^4 = 13.$                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Find x.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 | The <i>rank</i> of a rational number $q$ is the unique $k$ for which $q = \frac{1}{a_1} + \cdots + \frac{1}{a_k}$ , where each $a_i$ is the smallest positive integer $q$ such that $q \ge \frac{1}{a_1} + \cdots + \frac{1}{a_i}$ . Let $q$ be the largest rational number less than $\frac{1}{4}$ with rank 3, and suppose the expression for $q$ is $\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3}$ . Find the ordered triple $(a_1, a_2, a_3)$ . |
| 3 | Let $S_0 = 0$ and let $S_k$ equal $a_1 + 2a_2 + \ldots + ka_k$ for $k \ge 1$ . Define $a_i$ to be 1 if $S_{i-1} < i$ and $-1$ if $S_{i-1} \ge i$ . What is the largest $k \le 2010$ such that $S_k = 0$ ?                                                                                                                                                                                                                                            |
| 4 | Suppose that there exist nonzero complex numbers $a$ , $b$ , $c$ , and $d$ such that $k$ is a root of both the equations $ax^3 + bx^2 + cx + d = 0$ and $bx^3 + cx^2 + dx + a = 0$ . Find all possible values of $k$ (including complex values).                                                                                                                                                                                                     |
| 5 | Suppose that x and y are complex numbers such that $x + y = 1$ and $x^{20} + y^{20} = 20$ . Find the sum of all possible values of $x^2 + y^2$ .                                                                                                                                                                                                                                                                                                     |
| 6 | Suppose that a polynomial of the form $p(x) = x^{2010} \pm x^{2009} \pm \cdots \pm x \pm 1$ has no real roots. What is the maximum possible number of coefficients of $-1$ in $p$ ?                                                                                                                                                                                                                                                                  |
| 7 | Let $a, b, c, x, y$ , and $z$ be complex numbers such that                                                                                                                                                                                                                                                                                                                                                                                           |
|   | $a = rac{b+c}{x-2}, \qquad b = rac{c+a}{y-2}, \qquad c = rac{a+b}{z-2}.$                                                                                                                                                                                                                                                                                                                                                                          |
|   | If $xy + yz + xz = 67$ and $x + y + z = 2010$ , find the value of $xyz$ .                                                                                                                                                                                                                                                                                                                                                                            |
| 8 | How many polynomials of degree exactly $5$ with real coefficients send the set $\{1,2,3,4,5,6\}$ to a permutation of itself?                                                                                                                                                                                                                                                                                                                         |
| 9 | Let $f(x) = cx(x-1)$ , where $c$ is a positive real number. We use $f^n(x)$ to denote the polynomial obtained by composing $f$ with itself $n$ times. For every positive integer $n$ , all the roots of $f^n(x)$ are real. What is the smallest possible value of $c$ ?                                                                                                                                                                              |

**AoPS Community** 

**10** Let p(x) and q(x) be two cubic polynomials such that p(0) = -24, q(0) = 30, and

$$p(q(x)) = q(p(x))$$

for all real numbers x. Find the ordered pair (p(3), q(6)).

- Calculus
- **1** Suppose that p(x) is a polynomial and that  $p(x) p'(x) = x^2 + 2x + 1$ . Compute p(5).

**2** Let f be a function such that f(0) = 1, f'(0) = 2, and

$$f''(t) = 4f'(t) - 3f(t) + 1$$

for all t. Compute the 4th derivative of f, evaluated at 0.

**3** Let p be a monic cubic polynomial such that p(0) = 1 and such that all the zeroes of p'(x) are also zeroes of p(x). Find p. Note: monic means that the leading coefficient is 1.

4 Compute  $\lim_{n \to \infty} \frac{\sum_{k=1}^{n} |\cos(k)|}{n}$ .

**5** Let the functions  $f(\alpha, x)$  and  $g(\alpha)$  be defined as

$$f(\alpha, x) = \frac{\left(\frac{x}{2}\right)^{\alpha}}{x - 1} \qquad \qquad g(\alpha) = \frac{d^4 f}{dx^4}|_{x = 2}$$

Then  $g(\alpha)$  is a polynomial is  $\alpha$ . Find the leading coefficient of  $g(\alpha)$ .

- **6** Let  $f(x) = x^3 x^2$ . For a given value of x, the graph of f(x), together with the graph of the line c + x, split the plane up into regions. Suppose that c is such that exactly two of these regions have finite area. Find the value of c that minimizes the sum of the areas of these two regions.
- 7 Let  $a_1$ ,  $a_2$ , and  $a_3$  be nonzero complex numbers with non-negative real and imaginary parts. Find the minimum possible value of

$$\frac{|a_1+a_2+a_3|}{\sqrt[3]{|a_1a_2a_3|}}.$$

8 Let 
$$f(n) = \sum_{k=2}^{\infty} \frac{1}{k^n \cdot k!}$$
. Calculate  $\sum_{n=2}^{\infty} f(n)$ .

# **AoPS Community**

## 2010 Harvard-MIT Mathematics Tournament

| 9  | Let $x(t)$ be a solution to the differential equation                                                                 |
|----|-----------------------------------------------------------------------------------------------------------------------|
|    | $(x+x')^2 + x \cdot x'' = \cos t$                                                                                     |
|    | with $x(0) = x'(0) = \sqrt{\frac{2}{5}}$ . Compute $x(\frac{\pi}{4})$ .                                               |
| 10 | Let $f(n) = \sum_{k=1}^{n} \frac{1}{k}$ . Then there exists constants $\gamma$ , $c$ , and $d$ such that              |
|    | $f(n) = \ln(x) + \gamma + \frac{c}{n} + \frac{d}{n^2} + O\left(\frac{1}{n^3}\right),$                                 |
|    | where the $O\left(rac{1}{n^3} ight)$ means terms of order $rac{1}{n^3}$ or lower. Compute the ordered pair $(c,d).$ |
| -  | Combinatorics                                                                                                         |
| -  | General Part 1                                                                                                        |
| -  | General Part 2                                                                                                        |
| -  | Geometry                                                                                                              |
| -  | Guts                                                                                                                  |
| _  | Team A                                                                                                                |
| -  | Team B                                                                                                                |

Act of Problem Solving is an ACS WASC Accredited School.