Art of Problem Solving

AoPS Community

Harvard-MIT Mathematics Tournament 2010

www.artofproblemsolving.com/community/c3628
by djmathman

- Algebra

1 Suppose that x and y are positive reals such that

$$
x-y^{2}=3, \quad x^{2}+y^{4}=13 .
$$

Find x.
2 The rank of a rational number q is the unique k for which $q=\frac{1}{a_{1}}+\cdots+\frac{1}{a_{k}}$, where each a_{i} is the smallest positive integer q such that $q \geq \frac{1}{a_{1}}+\cdots+\frac{1}{a_{i}}$. Let q be the largest rational number less than $\frac{1}{4}$ with rank 3 , and suppose the expression for q is $\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}$. Find the ordered triple $\left(a_{1}, a_{2}, a_{3}\right)$.

3 Let $S_{0}=0$ and let S_{k} equal $a_{1}+2 a_{2}+\ldots+k a_{k}$ for $k \geq 1$. Define a_{i} to be 1 if $S_{i-1}<i$ and -1 if $S_{i-1} \geq i$. What is the largest $k \leq 2010$ such that $S_{k}=0$?

4 Suppose that there exist nonzero complex numbers a, b, c, and d such that k is a root of both the equations $a x^{3}+b x^{2}+c x+d=0$ and $b x^{3}+c x^{2}+d x+a=0$. Find all possible values of k (including complex values).
$5 \quad$ Suppose that x and y are complex numbers such that $x+y=1$ and $x^{20}+y^{20}=20$. Find the sum of all possible values of $x^{2}+y^{2}$.

6 Suppose that a polynomial of the form $p(x)=x^{2010} \pm x^{2009} \pm \cdots \pm x \pm 1$ has no real roots. What is the maximum possible number of coefficients of -1 in p ?

7 Let a, b, c, x, y, and z be complex numbers such that

$$
a=\frac{b+c}{x-2}, \quad b=\frac{c+a}{y-2}, \quad c=\frac{a+b}{z-2} .
$$

If $x y+y z+x z=67$ and $x+y+z=2010$, find the value of $x y z$.
8 How many polynomials of degree exactly 5 with real coefficients send the set $\{1,2,3,4,5,6\}$ to a permutation of itself?

9 Let $f(x)=c x(x-1)$, where c is a positive real number. We use $f^{n}(x)$ to denote the polynomial obtained by composing f with itself n times. For every positive integer n, all the roots of $f^{n}(x)$ are real. What is the smallest possible value of c ?

10 Let $p(x)$ and $q(x)$ be two cubic polynomials such that $p(0)=-24, q(0)=30$, and

$$
p(q(x))=q(p(x))
$$

for all real numbers x. Find the ordered pair $(p(3), q(6))$.

- \quad Calculus

1 Suppose that $p(x)$ is a polynomial and that $p(x)-p^{\prime}(x)=x^{2}+2 x+1$. Compute $p(5)$.
2 Let f be a function such that $f(0)=1, f^{\prime}(0)=2$, and

$$
f^{\prime \prime}(t)=4 f^{\prime}(t)-3 f(t)+1
$$

for all t. Compute the 4 th derivative of f, evaluated at 0 .
3 Let p be a monic cubic polynomial such that $p(0)=1$ and such that all the zeroes of $p^{\prime}(x)$ are also zeroes of $p(x)$. Find p. Note: monic means that the leading coefficient is 1 .

4 Compute $\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}|\cos (k)|}{n}$.
5 Let the functions $f(\alpha, x)$ and $g(\alpha)$ be defined as

$$
f(\alpha, x)=\frac{\left(\frac{x}{2}\right)^{\alpha}}{x-1} \quad g(\alpha)=\left.\frac{d^{4} f}{d x^{4}}\right|_{x=2}
$$

Then $g(\alpha)$ is a polynomial is α. Find the leading coefficient of $g(\alpha)$.
6 Let $f(x)=x^{3}-x^{2}$. For a given value of x, the graph of $f(x)$, together with the graph of the line $c+x$, split the plane up into regions. Suppose that c is such that exactly two of these regions have finite area. Find the value of c that minimizes the sum of the areas of these two regions.

7 Let a_{1}, a_{2}, and a_{3} be nonzero complex numbers with non-negative real and imaginary parts. Find the minimum possible value of

$$
\frac{\left|a_{1}+a_{2}+a_{3}\right|}{\sqrt[3]{\left|a_{1} a_{2} a_{3}\right|}}
$$

8 Let $f(n)=\sum_{k=2}^{\infty} \frac{1}{k^{n} \cdot k!}$. Calculate $\sum_{n=2}^{\infty} f(n)$.

9 Let $x(t)$ be a solution to the differential equation

$$
\left(x+x^{\prime}\right)^{2}+x \cdot x^{\prime \prime}=\cos t
$$

with $x(0)=x^{\prime}(0)=\sqrt{\frac{2}{5}}$. Compute $x\left(\frac{\pi}{4}\right)$.
10 Let $f(n)=\sum_{k=1}^{n} \frac{1}{k}$. Then there exists constants γ, c, and d such that

$$
f(n)=\ln (x)+\gamma+\frac{c}{n}+\frac{d}{n^{2}}+O\left(\frac{1}{n^{3}}\right),
$$

where the $O\left(\frac{1}{n^{3}}\right)$ means terms of order $\frac{1}{n^{3}}$ or lower. Compute the ordered pair (c, d).

- Combinatorics
- General Part 1
- General Part 2
- Geometry
- Guts
- \quad Team A
- Team B

