Art of Problem Solving

AoPS Community

Harvard-MIT Mathematics Tournament 2011

www.artofproblemsolving.com/community/c3629
by orangefronted, v_Enhance, ProblemSolver1026, dragon96, Geometrizer

- Algebra
- February 12th

1 Let a, b, c be positive real numbers. Determine the largest total number of real roots that the following three polynomials may have among them: $a x^{2}+b x+c, b x^{2}+c x+a$, and $c x^{2}+a x+b$.

2 Let $a \star b=a b+a+b$ for all integers a and b. Evaluate $1 \star(2 \star(3 \star(4 \star \ldots(99 \star 100) \ldots))$.
3 Find all integers x such that $2 x^{2}+x-6$ is a positive integral power of a prime positive integer.

4 For all real numbers x, let

$$
f(x)=\frac{1}{\sqrt[2011]{1-x^{2011}}}
$$

Evaluate $(f(f(\ldots(f(2011)) \ldots)))^{2011}$, where f is applied 2010 times.
5 Let $f(x)=x^{2}+6 x+c$ for all real number $\mathbf{s} x$, where c is some real number. For what values of c does $f(f(x))$ have exactly 3 distinct real roots?

6 How many polynomials P with integer coefficients and degree at most 5 satisfy $0 \leq P(x)<$ 120 for all $x \in\{0,1,2,3,4,5\}$?

7 Let $A=\{1,2, \ldots, 2011\}$. Find the number of functions f from A to A that satisfy $f(n) \leq n$ for all n in A and attain exactly 2010 distinct values.
$8 \quad$ Let $z=\cos \frac{2 \pi}{2011}+i \sin \frac{2 \pi}{2011}$, and let

$$
P(x)=x^{2008}+3 x^{2007}+6 x^{2006}+\cdots+\frac{2008 \cdot 2009}{2} x+\frac{2009 \cdot 2010}{2}
$$

for all complex numbers x. Evaluate $P(z) P\left(z^{2}\right) P\left(z^{3}\right) \cdots P\left(z^{2010}\right)$.
9 Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences defined recursively by $a_{0}=2 ; b_{0}=2$, and $a_{n+1}=a_{n} \sqrt{1+a_{n}^{2}+b_{n}^{2}}-$ $b_{n} ; b_{n+1}=b_{n} \sqrt{1+a_{n}^{2}+b_{n}^{2}}+a_{n}$. Find the ternary (base 3) representation of a_{4} and b_{4}.

AoPS Community

- Geometry
- \quad February 12th

1 Let $A B C$ be a triangle such that $A B=7$, and let the angle bisector of $\angle B A C$ intersect line $B C$ at D. If there exist points E and F on sides $A C$ and $B C$, respectively, such that lines $A D$ and $E F$ are parallel and divide triangle $A B C$ into three parts of equal area, determine the number of possible integral values for $B C$.

2 Let H be a regular hexagon of side length x. Call a hexagon in the same plane a "distortion" of H if
and only if it can be obtained from H by translating each vertex of H by a distance strictly less than 1 . Determine the smallest value of x for which every distortion of H is necessarily convex.

3 Let $A B C D E F$ be a regular hexagon of area 1 . Let M be the midpoint of $D E$. Let X be the intersection of $A C$ and $B M$, let Y be the intersection of $B F$ and $A M$, and let Z be the intersection of $A C$ and $B F$. If $[P]$ denotes the area of a polygon P for any polygon P in the plane, evaluate $[B X C]+[A Y F]+[A B Z]-[M X Z Y]$.
$4 \quad$ Let $A B C D$ be a square of side length 13 . Let E and F be points on rays $A B$ and $A D$ respectively, so that the area of square $A B C D$ equals the area of triangle $A E F$. If $E F$ intersects $B C$ at X and $B X=6$, determine $D F$.

5 Let $A B C D E F$ be a convex equilateral hexagon such that lines $B C, A D$, and $E F$ are parallel. Let H be the orthocenter of triangle $A B D$. If the smallest interior angle of the hexagon is 4 degrees, determine the smallest angle of the triangle $H A D$ in degrees.

6 Let $A B C D$ be a cyclic quadrilateral, and suppose that $B C=C D=2$. Let I be the incenter of triangle $A B D$. If $A I=2$ as well, find the minimum value of the length of diagonal $B D$.

7 Let $A B C D$ be a quadrilateral inscribed in the unit circle such that $\angle B A D$ is 30 degrees. Let m denote the minimum value of $C P+P Q+C Q$, where P and Q may be any points lying along rays $A B$ and $A D$, respectively. Determine the maximum value of m.

8 Collinear points A, B, and C are given in the Cartesian plane such that $A=(a, 0)$ lies along the x -axis, B lies along the line $y=x, C$ lies along the line $y=2 x$, and $\frac{A B}{B C}=2$. If $D=(a, a)$, and the circumcircle of triangle $A D C$ intersects the line $y=x$ again at E, and ray $A E$ intersects $y=2 x$ at F, evaluate $\frac{A E}{E F}$.
$9 \quad$ Let ω_{1} and ω_{2} be two circles that intersect at points A and B. Let line l be tangent to ω_{1} at P and to ω_{2} at Q such that A is closer to $P Q$ than B. Let points R and S lie along rays $P A$ and $Q A$, respectively, so that $P Q=A R=A S$ and R and S are on opposite sides of A as P and
Q. Let O be the circumcenter of triangle $A S R$, and C and D be the midpoints of major arcs $A P$ and $A Q$, respectively. If $\angle A P Q$ is 45 degrees and $\angle A Q P$ is 30 degrees, determine $\angle C O D$ in degrees.

- Combinatorics

- February 12th

2 A classroom has 30 students and 30 desks arranged in 5 rows of 6 . If the class has 15 boys and 15 girls, in how many ways can the students be placed in the chairs such that no boy is sitting in front of, behind, or next to another boy, and no girl is sitting in front of, behind, or next to another girl?

3 Nathaniel and Obediah play a game in which they take turns rolling a fair six-sided die and keep a
running tally of the sum of the results of all rolls made. A player wins if, after he rolls, the number on the running tally is a multiple of 7 . Play continues until either player wins, or else inde nitely. If Nathaniel goes fi rst, determine the probability that he ends up winning.

- Calculus

- February 12th
$3 \quad$ Evaluate $\int_{1}^{\infty}\left(\frac{\ln x}{x}\right)^{2011} d x$.

