Art of Problem Solving

AoPS Community

Serbia National Math Olympiad 2007

www.artofproblemsolving.com/community/c3633
by Igor, N.T.TUAN

Day 1

1 A point D is chosen on the side $A C$ of a triangle $A B C$ with $\angle C<\angle A<90^{\circ}$ in such a way that $B D=B A$. The incircle of $A B C$ is tangent to $A B$ and $A C$ at points K and L, respectively. Let J be the incenter of triangle $B C D$. Prove that the line $K L$ intersects the line segment $A J$ at its midpoint.

2 Triangle $\triangle G R B$ is dissected into 25 small triangles as shown. All vertices of these triangles are painted in three colors so that the following conditions are satisfied: Vertex G is painted in green, vertex R in red, and B in blue; Each vertex on side $G R$ is either green or red, each vertex on $R B$ is either red or blue, and each vertex on $G B$ is either green or blue. The vertices inside the big triangle are arbitrarily colored.

Prove that, regardless of the way of coloring, at least one of the 25 small triangles has vertices of three different colors.

3 Determine all pairs of natural numbers $(x ; n)$ that satisfy the equation

$$
x^{3}+2 x+1=2^{n} \text {. }
$$

Day 2

$1 \quad$ Let k be a natural number. For each function $f: \mathbb{N} \rightarrow \mathbb{N}$ define the sequence of functions $\left(f_{m}\right)_{m \geq 1}$ by $f_{1}=f$ and $f_{m+1}=f \circ f_{m}$ for $m \geq 1$. Function f is called k-nice if for each $n \in \mathbb{N}: f_{k}(n)=f(n)^{k}$.
(a) For which k does there exist an injective k-nice function f ?
(b) For which k does there exist a surjective k-nice function f ?

2 In a scalene triangle $A B C, A D, B E, C F$ are the angle bisectors ($D \in B C, E \in A C, F \in A B$). Points K_{a}, K_{b}, K_{c} on the incircle of triangle $A B C$ are such that $D K_{a}, E K_{b}, F K_{c}$ are tangent to the incircle and $K_{a} \notin B C, K_{b} \notin A C, K_{c} \notin A B$. Let A_{1}, B_{1}, C_{1} be the midpoints of sides $B C, C A, A B$, respectively. Prove that the lines $A_{1} K_{a}, B_{1} K_{b}, C_{1} K_{c}$ intersect on the incircle of triangle $A B C$.

3 Let k be a given natural number. Prove that for any positive numbers $x ; y ; z$ with the sum 1 the following inequality holds:

$$
\frac{x^{k+2}}{x^{k+1}+y^{k}+z^{k}}+\frac{y^{k+2}}{y^{k+1}+z^{k}+x^{k}}+\frac{z^{k+2}}{z^{k+1}+x^{k}+y^{k}} \geq \frac{1}{7}
$$

When does equality occur?

