

AoPS Community

2008 Serbia National Math Olympiad

Serbia National Math Olympiad 2008

www.artofproblemsolving.com/community/c3634 by silouan, dule_00, alexilic, April, nguyentrang

Day 1	
1	Find all nonegative integers x, y, z such that $12^x + y^4 = 2008^z$
2	Triangle $\triangle ABC$ is given. Points D i E are on line AB such that $D - A - B - E$, $AD = AC$ and $BE = BC$. Bisector of internal angles at A and B intersect BC , AC at P and Q , and circumcircle of ABC at M and N . Line which connects A with center of circumcircle of BME and line which connects B and center of circumcircle of AND intersect at X . Prove that $CX \perp PQ$.
3	Let a , b , c be positive real numbers such that $a + b + c = 1$. Prove inequality:

$$\frac{1}{bc+a+\frac{1}{a}} + \frac{1}{ac+b+\frac{1}{b}} + \frac{1}{ab+c+\frac{1}{c}} \leqslant \frac{27}{31}.$$

Day 2

- **4** Each point of a plane is painted in one of three colors. Show that there exists a triangle such that: (*i*) all three vertices of the triangle are of the same color; (*ii*) the radius of the circumcircle of the triangle is 2008; (*iii*) one angle of the triangle is either two or three times greater than one of the other two angles.
- 5 The sequence $(a_n)_{n\geq 1}$ is defined by $a_1 = 3$, $a_2 = 11$ and $a_n = 4a_{n-1} a_{n-2}$, for $n \geq 3$. Prove that each term of this sequence is of the form $a^2 + 2b^2$ for some natural numbers a and b.
- 6 In a convex pentagon ABCDE, let $\angle EAB = \angle ABC = 120^\circ$, $\angle ADB = 30^\circ$ and $\angle CDE = 60^\circ$. Let AB = 1. Prove that the area of the pentagon is less than $\sqrt{3}$.

🟟 AoPS Online 🔯 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.