Art of Problem Solving

AoPS Community

Serbia National Math Olympiad 2008

www.artofproblemsolving.com/community/c3634
by silouan, dule_00, alexilic, April, nguyentrang

Day 1

1 Find all nonegative integers x, y, z such that $12^{x}+y^{4}=2008^{z}$
2 Triangle $\triangle A B C$ is given. Points D i E are on line $A B$ such that $D-A-B-E, A D=A C$ and $B E=B C$. Bisector of internal angles at A and B intersect $B C, A C$ at P and Q, and circumcircle of $A B C$ at M and N. Line which connects A with center of circumcircle of $B M E$ and line which connects B and center of circumcircle of $A N D$ intersect at X. Prove that $C X \perp$ $P Q$.

3 Let a, b, c be positive real numbers such that $a+b+c=1$. Prove inequality:

$$
\frac{1}{b c+a+\frac{1}{a}}+\frac{1}{a c+b+\frac{1}{b}}+\frac{1}{a b+c+\frac{1}{c}} \leqslant \frac{27}{31} .
$$

Day 2

4 Each point of a plane is painted in one of three colors. Show that there exists a triangle such that: (i) all three vertices of the triangle are of the same color; $(i i)$ the radius of the circumcircle of the triangle is 2008; (iii) one angle of the triangle is either two or three times greater than one of the other two angles.

5 The sequence $\left(a_{n}\right)_{n \geq 1}$ is defined by $a_{1}=3, a_{2}=11$ and $a_{n}=4 a_{n-1}-a_{n-2}$, for $n \geq 3$. Prove that each term of this sequence is of the form $a^{2}+2 b^{2}$ for some natural numbers a and b.

6 In a convex pentagon $A B C D E$, let $\angle E A B=\angle A B C=120^{\circ}, \angle A D B=30^{\circ}$ and $\angle C D E=60^{\circ}$. Let $A B=1$. Prove that the area of the pentagon is less than $\sqrt{3}$.

