Art of Problem Solving

AoPS Community

Serbia National Math Olympiad 2011

www.artofproblemsolving.com/community/c3636
by RaleD

Day 1

1 Let $n \geq 2$ be integer. Let $a_{0}, a_{1}, \ldots a_{n}$ be sequence of positive reals such that: $\left(a_{k-1}+a_{k}\right)\left(a_{k}+\right.$ $\left.a_{k+1}\right)=a_{k-1}-a_{k+1}$, for $k=1,2, \ldots, n-1$.
Prove $a_{n}<\frac{1}{n-1}$.
2 Let n be an odd positive integer such that both $\phi(n)$ and $\phi(n+1)$ are powers of two. Prove $n+1$ is power of two or $n=5$.

3 Let H be orthocenter and O circumcenter of an acuted angled triangle $A B C . D$ and E are feets of perpendiculars from A and B on $B C$ and $A C$ respectively. Let $O D$ and $O E$ intersect $B E$ and $A D$ in K and L, respectively. Let X be intersection of circumcircles of $H K D$ and $H L E$ different than H, and M is midpoint of $A B$. Prove that K, L, M are collinear iff X is circumcenter of $E O D$.

Day 2

1 On sides $A B, A C, B C$ are points M, X, Y, respectively, such that $A X=M X ; B Y=M Y . K$, L are midpoints of $A Y$ and $B X$. O is circumcenter of $A B C, O_{1}, O_{2}$ are symmetric with O with respect to K and L. Prove that X, Y, O_{1}, O_{2} are concyclic.

2 Are there positive integers a, b, c greater than 2011 such that: $(a+\sqrt{b})^{c}=\ldots 2010,2011 \ldots$?
3 Set T consists of 66 points in plane, and P consists of 16 lines in plane. Pair (A, l) is good if $A \in T, l \in P$ and $A \in l$. Prove that maximum number of good pairs is no greater than 159 , and prove that there exits configuration with exactly 159 good pairs.

