AoPS Community

Serbia National Math Olympiad 2013

www.artofproblemsolving.com/community/c3638
by Djile
$1 \quad$ Let k be a natural number. Bijection $f: \mathbb{Z} \rightarrow \mathbb{Z}$ has the following property: for any integers i and $j,|i-j| \leq k$ implies $|f(i)-f(j)| \leq k$. Prove that for every $i, j \in \mathbb{Z}$ it stands:

$$
|f(i)-f(j)|=|i-j| .
$$

2 For a natural number n, set S_{n} is defined as:

$$
S_{n}=\left\{\binom{n}{n},\binom{2 n}{n},\binom{3 n}{n}, \ldots,\binom{n^{2}}{n}\right\} .
$$

a) Prove that there are infinitely many composite numbers n, such that the set S_{n} is not complete residue system $\bmod n$;
b) Prove that there are infinitely many composite numbers n, such that the set S_{n} is complete residue system $\bmod n$.

3 Let M, N and P be midpoints of sides $B C, A C$ and $A B$, respectively, and let O be circumcenter of acute-angled triangle $A B C$. Circumcircles of triangles $B O C$ and $M N P$ intersect at two different points X and Y inside of triangle $A B C$. Prove that

$$
\angle B A X=\angle C A Y .
$$

4 Determine all natural numbers n for which there is a partition of $\{1,2, \ldots, 3 n\}$ in n pairwise disjoint subsets of the form $\{a, b, c\}$, such that numbers $b-a$ and $c-b$ are different numbers from the set $\{n-1, n, n+1\}$.

5 Let A^{\prime} and B^{\prime} be feet of altitudes from A and B, respectively, in acute-angled triangle $A B C$ $(A C \neq B C)$. Circle k contains points A^{\prime} and B^{\prime} and touches segment $A B$ in D. If triangles $A D A^{\prime}$ and $B D B^{\prime}$ have the same area, prove that

$$
\angle A^{\prime} D B^{\prime}=\angle A C B .
$$

6 Find the largest constant $K \in \mathbb{R}$ with the following property:
if $a_{1}, a_{2}, a_{3}, a_{4}>0$ are numbers satisfying $a_{i}^{2}+a_{j}^{2}+a_{k}^{2} \geq 2\left(a_{i} a_{j}+a_{j} a_{k}+a_{k} a_{i}\right)$, for every $1 \leq i<j<k \leq 4$, then

$$
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2} \geq K\left(a_{1} a_{2}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right) .
$$

