

AoPS Community

Serbia Team Selection Test 2009

www.artofproblemsolving.com/community/c3639 by Bugi

Day 1

1	Let α and β be the angles of a non-isosceles triangle <i>ABC</i> at points <i>A</i> and <i>B</i> , respectively. Let the bisectors of these angles intersect opposing sides of the triangle in <i>D</i> and <i>E</i> , respectively. Prove that the acute angle between the lines <i>DE</i> and <i>AB</i> isn't greater than $\frac{ \alpha-\beta }{3}$.
2	Find the least number which is divisible by 2009 and its sum of digits is 2009.
3	Find the largest natural number n for which there exist different sets S_1, S_2, \ldots, S_n such that: $1^{\circ} S_i \cup S_j \le 2004$ for each two $1 \le i, j \le n$ and $2^{\circ} S_i \cup S_j \cup S_k = \{1, 2, \ldots, 2008\}$ for each three integers $1 \le i < j < k \le n$.
Day 2	2
1	Let $n \in \mathbb{N}$ and A_n set of all permutations (a_1, \ldots, a_n) of the set $\{1, 2, \ldots, n\}$ for which
	$k 2(a_1 + \dots + a_k), \text{ for all } 1 \le k \le n.$
	Find the number of elements of the set A_n .
	Proposed by Vidan Govedarica, Serbia
2	Let x, y, z be positive real numbers such that $xy + yz + zx = x + y + z$. Prove the inequality $\frac{1}{x^2+y+1} + \frac{1}{y^2+z+1} + \frac{1}{z^2+x+1} \le 1$
	When does the equality hold?
3	Let k be the inscribed circle of non-isosceles triangle $\triangle ABC$, which center is S. Circle k touches sides BC, CA, AB in points P, Q, R respectively. Line QR intersects BC in point M. Let a circle which contains points B and C touch k in point N. Circumscribed circle of $\triangle MNP$ intersects

line AP in point L, different from P. Prove that points S, L and M are collinear.

Art of Problem Solving is an ACS WASC Accredited School.