Art of Problem Solving

AoPS Community

Serbia Team Selection Test 2009

www.artofproblemsolving.com/community/c3639
by Bugi

Day 1

1 Let α and β be the angles of a non-isosceles triangle $A B C$ at points A and B, respectively. Let the bisectors of these angles intersect opposing sides of the triangle in D and E, respectively. Prove that the acute angle between the lines $D E$ and $A B$ isn't greater than $\frac{|\alpha-\beta|}{3}$.

2 Find the least number which is divisible by 2009 and its sum of digits is 2009.
3 Find the largest natural number n for which there exist different sets $S_{1}, S_{2}, \ldots, S_{n}$ such that: $1^{\circ}\left|S_{i} \cup S_{j}\right| \leq 2004$ for each two $1 \leq i, j \leq n$ and $2^{\circ} S_{i} \cup S_{j} \cup S_{k}=\{1,2, \ldots, 2008\}$ for each three integers $1 \leq i<j<k \leq n$.

Day 2

1 Let $n \in \mathbb{N}$ and A_{n} set of all permutations $\left(a_{1}, \ldots, a_{n}\right)$ of the set $\{1,2, \ldots, n\}$ for which

$$
k \mid 2\left(a_{1}+\cdots+a_{k}\right), \text { for all } 1 \leq k \leq n .
$$

Find the number of elements of the set A_{n}.
Proposed by Vidan Govedarica, Serbia
2 Let x, y, z be positive real numbers such that $x y+y z+z x=x+y+z$. Prove the inequality $\frac{1}{x^{2}+y+1}+\frac{1}{y^{2}+z+1}+\frac{1}{z^{2}+x+1} \leq 1$

When does the equality hold?
3 Let k be the inscribed circle of non-isosceles triangle $\triangle A B C$, which center is S. Circle k touches sides $B C, C A, A B$ in points P, Q, R respectively. Line $Q R$ intersects $B C$ in point M. Let a circle which contains points B and C touch k in point N. Circumscribed circle of $\triangle M N P$ intersects line $A P$ in point L, different from P. Prove that points S, L and M are collinear.

