

AoPS Community

Serbia Team Selection Test 2012

www.artofproblemsolving.com/community/c3640 by Djile

-	TST
-	Additional TST
1	Let $P(x)$ be a polynomial of degree 2012 with real coefficients satisfying the condition
	$P(a)^3 + P(b)^3 + P(c)^3 \ge 3P(a)P(b)P(c),$
	for all real numbers a, b, c such that $a + b + c = 0$. Is it possible for $P(x)$ to have exactly 2012 distinct real roots?
2	Let $\sigma(x)$ denote the sum of divisors of natural number x , including 1 and x . For every $n \in \mathbb{N}$ define $f(n)$ as number of natural numbers $m, m \leq n$, for which $\sigma(m)$ is odd number. Prove that there are infinitely many natural numbers n , such that $f(n) n$.
3	Let P and Q be points inside triangle ABC satisfying $\angle PAC = \angle QAB$ and $\angle PBC = \angle QBA$.
	a) Prove that feet of perpendiculars from P and Q on the sides of triangle ABC are concyclic.
	b) Let D and E be feet of perpendiculars from P on the lines BC and AC and F foot of perpendicular from Q on AB . Let M be intersection point of DE and AB . Prove that $MP \perp CF$.

Act of Problem Solving is an ACS WASC Accredited School.