AoPS Community

Serbia Team Selection Test 2012

www.artofproblemsolving.com/community/c3640
by Djile

- TST
- Additional TST

1 Let $P(x)$ be a polynomial of degree 2012 with real coefficients satisfying the condition

$$
P(a)^{3}+P(b)^{3}+P(c)^{3} \geq 3 P(a) P(b) P(c),
$$

for all real numbers a, b, c such that $a+b+c=0$. Is it possible for $P(x)$ to have exactly 2012 distinct real roots?

2 Let $\sigma(x)$ denote the sum of divisors of natural number x, including 1 and x. For every $n \in \mathbb{N}$ define $f(n)$ as number of natural numbers $m, m \leq n$, for which $\sigma(m)$ is odd number. Prove that there are infinitely many natural numbers n, such that $f(n) \mid n$.

3 Let P and Q be points inside triangle $A B C$ satisfying $\angle P A C=\angle Q A B$ and $\angle P B C=\angle Q B A$.
a) Prove that feet of perpendiculars from P and Q on the sides of triangle $A B C$ are concyclic.
b) Let D and E be feet of perpendiculars from P on the lines $B C$ and $A C$ and F foot of perpendicular from Q on $A B$. Let M be intersection point of $D E$ and $A B$. Prove that $M P \perp C F$.

