AoPS Community

2008 Bosnia And Herzegovina - Regional Olympiad

Regional Olympiad - Federation Of Bosnia And Herzegovina 2008

www.artofproblemsolving.com/community/c3642
by delegat, matt276eagles, aviateurpilot, gobathegreat

- \quad First Grades

1 Squares $B C A_{1} A_{2}, C A B_{1} B_{2}, A B C_{1} C_{2}$ are outwardly drawn on sides of triangle $\triangle A B C$. If $A B_{1} A^{\prime} C_{2}, B C_{1} B^{\prime} A_{2}, C A_{1} C^{\prime} B_{2}$ are parallelograms then prove that:
(i) Lines $B C$ and $A A^{\prime}$ are orthogonal.
(ii)Triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ have common centroid

2 For arbitrary reals x, y and z prove the following inequality:
$x^{2}+y^{2}+z^{2}-x y-y z-z x \geq \max \left\{\frac{3(x-y)^{2}}{4}, \frac{3(y-z)^{2}}{4}, \frac{3(y-z)^{2}}{4}\right\}$
3 Let b be an even positive integer. Assume that there exist integer $n>1$ such that $\frac{b^{n}-1}{b-1}$ is perfect square.
Prove that b is divisible by 8 .
$4 \quad$ Given are two disjoint sets A and B such that their union is \mathbb{N}. Prove that for all positive integers n there exist different numbers a and b, both greater than n, such that either $\{a, b, a+b\}$ is contained in A or $\{a, b, a+b\}$ is contained in B.

- Second Grades

1 Given is an acute angled triangle $\triangle A B C$ with side lengths a, b and c (in an usual way) and circumcenter O. Angle bisector of angle $\angle B A C$ intersects circumcircle at points A and A_{1}. Let D be projection of point A_{1} onto line $A B, L$ and M be midpoints of $A C$ and $A B$, respectively.
(i) Prove that $A D=\frac{1}{2}(b+c)$
(ii) If triangle $\triangle A B C$ is an acute angled prove that $A_{1} D=O M+O L$

2 IF a, b and c are positive reals such that $a^{2}+b^{2}+c^{2}=1$ prove the inequality:

$$
\frac{a^{5}+b^{5}}{a b(a+b)}+\frac{b^{5}+c^{5}}{b c(b+c)}+\frac{c^{5}+a^{5}}{c a(a+b)} \geq 3(a b+b c+c a)-2 .
$$

3 Prove that equation $p^{4}+q^{4}=r^{4}$ does not have solution in set of prime numbers.
$4 \quad n$ points (no three being collinear) are given in a plane. Some points are connected and they form k segments. If no three of these segments form triangle (equiv. there are no three points, such that each two of them are connected) prove that $k \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$

- \quad Third Grades

1 Two circles with centers S_{1} and S_{2} are externally tangent at point K. These circles are also internally tangent to circle S at points A_{1} and A_{2}, respectively. Denote by Pone of the intersection points of S and common tangent to S_{1} and S_{2} at K.Line $P A_{1}$ intersects S_{1} at B_{1} while $P A_{2}$ intersects S_{2} at B_{2}.
Prove that $B_{1} B_{2}$ is common tangent of circles S_{1} and S_{2}.
2 If a, b and c are positive reals prove inequality:

$$
\left(1+\frac{4 a}{b+c}\right)\left(1+\frac{4 b}{a+c}\right)\left(1+\frac{4 c}{a+b}\right)>25 .
$$

3 Find all positive integers a and b such that $\frac{a^{4}+a^{3}+1}{a^{2} b^{2}+a b^{2}+1}$ is an integer.
4 A rectangular table 9 rows $\times 2008$ columns is fulfilled with numbers $1,2, \ldots, 2008$ in a such way that each number appears exactly 9 times in table and difference between any two numbers from same column is not greater than 3 . What is maximum value of minimum sum in column (with minimal sum)?

- Fourth Grades

1 Given are three pairwise externally tangent circles K_{1}, K_{2} and K_{3}. denote by P_{1} tangent point of K_{2} and K_{3} and by P_{2} tangent point of K_{1} and K_{3}.

Let $A B$ (A and B are different from tangency points) be a diameter of circle K_{3}. Line $A P_{2}$ intersects circle K_{1} (for second time) at point X and line $B P_{1}$ intersects circle K_{2} (for second time) at Y.

If Z is intersection point of lines $A P_{1}$ and $B P_{2}$ prove that points X, Y and Z are collinear.

2 Find all positive integers a and b such that $\frac{a^{4}+a^{3}+1}{a^{2} b^{2}+a b^{2}+1}$ is an integer.

3 A rectangular table 9 rows $\times 2008$ columns is fulfilled with numbers $1,2, \ldots, 2008$ in a such way that each number appears exactly 9 times in table and difference between any two numbers from same column is not greater than 3 . What is maximum value of minimum sum in column (with minimal sum)?

4 Determine is there a function $a: \mathbb{N} \rightarrow \mathbb{N}$ such that: $i) a(0)=0 i i) a(n)=n-a(a(n)), \forall n \in \mathbb{N}$. If exists prove: a) $a(k) \geq a(k-1) b$) Does not exist positive integer k such that $a(k-1)=$ $a(k)=a(k+1)$.

