

AoPS Community

2008 Bosnia And Herzegovina - Regional Olympiad

Regional Olympiad - Federation Of Bosnia And Herzegovina 2008

www.artofproblemsolving.com/community/c3642

by delegat, matt276eagles, aviateurpilot, gobathegreat

- First Grades
- **1** Squares BCA_1A_2 , CAB_1B_2 , ABC_1C_2 are outwardly drawn on sides of triangle $\triangle ABC$. If $AB_1A'C_2$, $BC_1B'A_2$, $CA_1C'B_2$ are parallelograms then prove that:

(i) Lines BC and AA' are orthogonal.

(ii) Triangles $\triangle ABC$ and $\triangle A'B'C'$ have common centroid

- 2 For arbitrary reals x, y and z prove the following inequality: $x^2 + y^2 + z^2 - xy - yz - zx \ge \max\{\frac{3(x-y)^2}{4}, \frac{3(y-z)^2}{4}, \frac{3(y-z)^2}{4}\}$
- 3 Let *b* be an even positive integer. Assume that there exist integer n > 1 such that $\frac{b^n 1}{b-1}$ is perfect square. Prove that *b* is divisible by 8.
- **4** Given are two disjoint sets *A* and *B* such that their union is \mathbb{N} . Prove that for all positive integers *n* there exist different numbers *a* and *b*, both greater than *n*, such that either $\{a, b, a + b\}$ is contained in *A* or $\{a, b, a + b\}$ is contained in *B*.
- Second Grades
- **1** Given is an acute angled triangle $\triangle ABC$ with side lengths a, b and c (in an usual way) and circumcenter O. Angle bisector of angle $\angle BAC$ intersects circumcircle at points A and A_1 . Let D be projection of point A_1 onto line AB, L and M be midpoints of AC and AB, respectively.

(i) Prove that $AD = \frac{1}{2}(b+c)$

(ii) If triangle $\triangle ABC$ is an acute angled prove that $A_1D = OM + OL$

2 IF *a*, *b* and *c* are positive reals such that $a^2 + b^2 + c^2 = 1$ prove the inequality:

$$\frac{a^5 + b^5}{ab(a+b)} + \frac{b^5 + c^5}{bc(b+c)} + \frac{c^5 + a^5}{ca(a+b)} \ge 3(ab+bc+ca) - 2$$

AoPS Community

2008 Bosnia And Herzegovina - Regional Olympiad

- **3** Prove that equation $p^4 + q^4 = r^4$ does not have solution in set of prime numbers.
- 4 *n* points (no three being collinear) are given in a plane. Some points are connected and they form *k* segments. If no three of these segments form triangle (equiv. there are no three points, such that each two of them are connected) prove that $k \le \left|\frac{n^2}{4}\right|$

Third Grades

1 Two circles with centers S_1 and S_2 are externally tangent at point K. These circles are also internally tangent to circle S at points A_1 and A_2 , respectively. Denote by Pone of the intersection points of S and common tangent to S_1 and S_2 at K.Line PA_1 intersects S_1 at B_1 while PA_2 intersects S_2 at B_2 .

Prove that B_1B_2 is common tangent of circles S_1 and S_2 .

2 If *a*, *b* and *c* are positive reals prove inequality:

$$\left(1+\frac{4a}{b+c}\right)\left(1+\frac{4b}{a+c}\right)\left(1+\frac{4c}{a+b}\right) > 25.$$

- **3** Find all positive integers a and b such that $\frac{a^4+a^3+1}{a^2b^2+ab^2+1}$ is an integer.
- 4 A rectangular table 9 rows \times 2008 columns is fulfilled with numbers 1, 2, ...,2008 in a such way that each number appears exactly 9 times in table and difference between any two numbers from same column is not greater than 3. What is maximum value of minimum sum in column (with minimal sum)?
- Fourth Grades
- **1** Given are three pairwise externally tangent circles K_1 , K_2 and K_3 . denote by P_1 tangent point of K_2 and K_3 and by P_2 tangent point of K_1 and K_3 .

Let AB (A and B are different from tangency points) be a diameter of circle K_3 . Line AP_2 intersects circle K_1 (for second time) at point X and line BP_1 intersects circle K_2 (for second time) at Y.

If Z is intersection point of lines AP_1 and BP_2 prove that points X, Y and Z are collinear.

2 Find all positive integers a and b such that $\frac{a^4+a^3+1}{a^2b^2+ab^2+1}$ is an integer.

AoPS Community

2008 Bosnia And Herzegovina - Regional Olympiad

- **3** A rectangular table 9 rows \times 2008 columns is fulfilled with numbers 1, 2, ...,2008 in a such way that each number appears exactly 9 times in table and difference between any two numbers from same column is not greater than 3. What is maximum value of minimum sum in column (with minimal sum)?
- **4** Determine is there a function $a : \mathbb{N} \to \mathbb{N}$ such that: *i*) a(0) = 0 *ii*) a(n) = n a(a(n)), $\forall n \in \mathbb{N}$. If exists prove: *a*) $a(k) \ge a(k-1)$ *b*) Does not exist positive integer *k* such that a(k-1) = a(k) = a(k+1).

AoPS Online 🔯 AoPS Academy 🔯 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.