

# **AoPS Community**

# 2008 Mongolia Team Selection Test

#### Mongolia Team Selection Test 2008

www.artofproblemsolving.com/community/c3643 by Litlle 1000t, baysa, JBL

#### Day 1

| 1     | Given acute angle triangle <i>ABC</i> . Let <i>CD</i> be the altitude , <i>H</i> be the orthocenter and <i>O</i> be the circumcenter of $\triangle ABC$ The line through point <i>D</i> and perpendicular with <i>OD</i> , is intersect <i>BC</i> at <i>E</i> . Prove that $\angle DHE = \angle ABC$ .                                                                                                                                                                                                |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | Let $a, b, c, d$ be the positive integers such that $a > b > c > d$ and $(a + b - c + d) (ac + bd)$ . Prove that if $m$ is arbitrary positive integer, $n$ is arbitrary odd positive integer, then $a^n b^m + c^m d^n$ is composite number                                                                                                                                                                                                                                                            |
| 3     | Given a circumscribed trapezium $ABCD$ with circumcircle $\omega$ and 2 parallel sides $AD, BC$ ( $BC < AD$ ). Tangent line of circle $\omega$ at the point $C$ meets with the line $AD$ at point $P$ . $PE$ is another tangent line of circle $\omega$ and $E \in \omega$ . The line $BP$ meets circle $\omega$ at point $K$ . The line passing through the point $C$ paralel to $AB$ intersects with $AE$ and $AK$ at points $N$ and $M$ respectively. Prove that $M$ is midpoint of segment $CN$ . |
| Day 2 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1     | Find all function $f: R^+ \to R^+$ such that for any $x, y, z \in R^+$ such that $x + y \ge z$ , $f(x + y - z) + f(2\sqrt{xz}) + f(2\sqrt{yz}) = f(x + y + z)$                                                                                                                                                                                                                                                                                                                                        |
| 2     | Given positive integers $m, n$ such that $m < n$ . Integers $1, 2,, n^2$ are arranged in $n \times n$ board. In each row, $m$ largest number colored red. In each column $m$ largest number colored blue. Find the minimum number of cells such that colored both red and blue.                                                                                                                                                                                                                       |
| 3     | Find the maximum number $C$ such that for any nonnegative $x, y, z$ the inequality $x^3 + y^3 + z^3 + C(xy^2 + yz^2 + zx^2) \ge (C+1)(x^2y + y^2z + z^2x)$ holds.                                                                                                                                                                                                                                                                                                                                     |
| Day 3 | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1     | Given an integer <i>a</i> . Let <i>p</i> is prime number such that $p a$ and $p \equiv \pm 3(mod8)$ . Define a sequence $\{a_n\}_{n=0}^{\infty}$ such that $a_n = 2^n + a$ . Prove that the sequence $\{a_n\}_{n=0}^{\infty}$ has finitely number of square of integer.                                                                                                                                                                                                                               |
| 2     | The quadrilateral $ABCD$ inscribed in a circle wich has diameter $BD$ . Let $A', B'$ are symmetric to $A, B$ with respect to the line $BD$ and $AC$ respectively. If $A'C \cap BD = P$ and $AC \cap B'D = Q$ then prove that $PQ \perp AC$                                                                                                                                                                                                                                                            |

### **AoPS Community**

## 2008 Mongolia Team Selection Test

 $\begin{array}{ll} \textbf{3} \qquad & \text{Given positive integers } m,n>1. \text{ Prove that the equation } (x+1)^n+(x+2)^n+\ldots+(x+m)^n=(y+1)^{2n}+(y+2)^{2n}+\ldots+(y+m)^{2n} \text{ has finitely number of solutions } x,y\in N \end{array}$ 

| Day | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | How many ways to fill the board $4\times 4$ by nonnegative integers, such that sum of the numbers of each row and each column is 3?                                                                                                                                                                                                                                                                                                                                                                                        |
| 2   | Let $a_1, a_2,, a_n$ is permutaion of $1, 2,, n$ . For this permutaion call the pair $(a_i, a_j)$ wrong pair if $i < j$ and $a_i > a_j$ . Let number of inversion is number of wrong pair of permutation $a_1, a_2, a_3,, a_n$ .<br>Let $n \ge 2$ is positive integer. Find the number of permutation of $1, 2,, n$ such that its number of inversion is divisible by $n$ .                                                                                                                                                |
| 3   | Let $\Omega$ is circle with radius $R$ and center $O$ . Let $\omega$ is a circle inside of the $\Omega$ with center $I$ radius $r$ . $X$ is variable point of $\omega$ and tangent line of $\omega$ pass through $X$ intersect the circle $\Omega$ at points $A, B$ . A line pass through $X$ perpendicular with $AI$ intersect $\omega$ at $Y$ distinct with $X$ .Let point $C$ is symmetric to the point $I$ with respect to the line $XY$ .Find the locus of circumcenter of triangle $ABC$ when $X$ varies on $\omega$ |

AoPS Online 🔯 AoPS Academy 🗳 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.