Art of Problem Solving

AoPS Community

National Science Olympiad 2005

www.artofproblemsolving.com/community/c3648
by jgnr

Day 1

1 Let n be a positive integer. Determine the number of triangles (non congruent) with integral side lengths and the longest side length is n.

2 For an arbitrary positive integer n, define $p(n)$ as the product of the digits of n (in decimal). Find all positive integers n such that $11 p(n)=n^{2}-2005$.

3 Let k and m be positive integers such that $\frac{1}{2}(\sqrt{k+4 \sqrt{m}}-\sqrt{k})$ is an integer.
(a) Prove that \sqrt{k} is rational.
(b) Prove that \sqrt{k} is a positive integer.

4 Let M be a point in triangle $A B C$ such that $\angle A M C=90^{\circ}, \angle A M B=150^{\circ}, \angle B M C=120^{\circ}$. The centers of circumcircles of triangles $A M C, A M B, B M C$ are P, Q, R, respectively. Prove that the area of $\triangle P Q R$ is greater than the area of $\triangle A B C$.

Day 2

$5 \quad$ For an arbitrary real number $x,\lfloor x\rfloor$ denotes the greatest integer not exceeding x. Prove that there is exactly one integer m which satisfy $m-\left\lfloor\frac{m}{2005}\right\rfloor=2005$.

6 Find all triples (x, y, z) of integers which satisfy
$x(y+z)=y^{2}+z^{2}-2$
$y(z+x)=z^{2}+x^{2}-2$
$z(x+y)=x^{2}+y^{2}-2$.
7 Let $A B C D$ be a convex quadrilateral. Square $A B_{1} A_{2} B$ is constructed such that the two vertices A_{2}, B_{1} is located outside $A B C D$. Similarly, we construct squares $B C_{1} B_{2} C, C D_{1} C_{2} D$, $D A_{1} D_{2} A$. Let K be the intersection of $A A_{2}$ and $B B_{1}, L$ be the intersection of $B B_{2}$ and $C C_{1}$, M be the intersection of $C C_{2}$ and $D D_{1}$, and N be the intersection of $D D_{2}$ and $A A_{1}$. Prove that $K M$ is perpendicular to $L N$.

8 There are 90 contestants in a mathematics competition. Each contestant gets acquainted with at least 60 other contestants. One of the contestants, Amin, state that at least four contestants
have the same number of new friends. Prove or disprove his statement.

