2005 Indonesia MO

AoPS Community

National Science Olympiad 2005

www.artofproblemsolving.com/community/c3648

KM is perpendicular to LN.

by jgnr	
Day 1	
1	Let n be a positive integer. Determine the number of triangles (non congruent) with integral side lengths and the longest side length is n .
2	For an arbitrary positive integer n , define $p(n)$ as the product of the digits of n (in decimal). Find all positive integers n such that $11p(n) = n^2 - 2005$.
3	Let k and m be positive integers such that $rac{1}{2}\left(\sqrt{k+4\sqrt{m}}-\sqrt{k} ight)$ is an integer.
	(a) Prove that \sqrt{k} is rational.
	(b) Prove that \sqrt{k} is a positive integer.
4	Let <i>M</i> be a point in triangle <i>ABC</i> such that $\angle AMC = 90^{\circ}$, $\angle AMB = 150^{\circ}$, $\angle BMC = 120^{\circ}$. The centers of circumcircles of triangles <i>AMC</i> , <i>AMB</i> , <i>BMC</i> are <i>P</i> , <i>Q</i> , <i>R</i> , respectively. Prove that the area of $\triangle PQR$ is greater than the area of $\triangle ABC$.
Day 2	
5	For an arbitrary real number x , $\lfloor x \rfloor$ denotes the greatest integer not exceeding x . Prove that there is exactly one integer m which satisfy $m - \lfloor \frac{m}{2005} \rfloor = 2005$.
6	Find all triples (x, y, z) of integers which satisfy $x(y + z) = y^2 + z^2 - 2$ $y(z + x) = z^2 + x^2 - 2$ $z(x + y) = x^2 + y^2 - 2$.
7	Let $ABCD$ be a convex quadrilateral. Square AB_1A_2B is constructed such that the two vertices A_2, B_1 is located outside $ABCD$. Similarly, we construct squares BC_1B_2C , CD_1C_2D , $DA_2D_2A_3$ be the intersection of AA_3 and BB_3 . The the intersection of BB_3 and CD_3 .

8 There are 90 contestants in a mathematics competition. Each contestant gets acquainted with at least 60 other contestants. One of the contestants, Amin, state that at least four contestants

 DA_1D_2A . Let K be the intersection of AA_2 and BB_1 , L be the intersection of BB_2 and CC_1 , M be the intersection of CC_2 and DD_1 , and N be the intersection of DD_2 and AA_1 . Prove that

have the same number of new friends. Prove or disprove his statement.

Act of Problem Solving is an ACS WASC Accredited School.