AoPS Community

National Science Olympiad 2007

www.artofproblemsolving.com/community/c3650
by jgnr, parmenides51

Day 1

1 Let $A B C$ be a triangle with $\angle A B C=\angle A C B=70^{\circ}$. Let point D on side $B C$ such that $A D$ is the altitude, point E on side $A B$ such that $\angle A C E=10^{\circ}$, and point F is the intersection of $A D$ and $C E$. Prove that $C F=B C$.

2 For every positive integer $n, b(n)$ denote the number of positive divisors of n and $p(n)$ denote the sum of all positive divisors of n. For example, $b(14)=4$ and $p(14)=24$. Let k be a positive integer greater than 1.
(a) Prove that there are infinitely many positive integers n which satisfy $b(n)=k^{2}-k+1$.
(b) Prove that there are finitely many positive integers n which satisfy $p(n)=k^{2}-k+1$.

3 Let a, b, c be positive real numbers which satisfy $5\left(a^{2}+b^{2}+c^{2}\right)<6(a b+b c+c a)$. Prove that these three inequalities hold: $a+b>c, b+c>a, c+a>b$.

4 A 10-digit arrangement $0,1,2,3,4,5,6,7,8,9$ is called beautiful if (i) when read left to right, $0,1,2,3,4$ form an increasing sequence, and $5,6,7,8,9$ form a decreasing sequence, and (ii) 0 is not the leftmost digit. For example, 9807123654 is a beautiful arrangement. Determine the number of beautiful arrangements.

Day 2

5 Let r, s be two positive integers and P a 'chessboard' with r rows and s columns. Let M denote the maximum value of rooks placed on P such that no two of them attack each other.
(a) Determine M.
(b) How many ways to place M rooks on P such that no two of them attack each other?
[Note: In chess, a rook moves and attacks in a straight line, horizontally or vertically.]
6 Find all triples (x, y, z) of real numbers which satisfy the simultaneous equations

$$
\begin{aligned}
& x=y^{3}+y-8 \\
& y=z^{3}+z-8
\end{aligned}
$$

$$
z=x^{3}+x-8
$$

7 Points A, B, C, D are on circle S, such that $A B$ is the diameter of S, but $C D$ is not the diameter. Given also that C and D are on different sides of $A B$. The tangents of S at C and D intersect at P. Points Q and R are the intersections of line $A C$ with line $B D$ and line $A D$ with line $B C$, respectively.
(a) Prove that P, Q, and R are collinear.
(b) Prove that $Q R$ is perpendicular to line $A B$.

8 Let m and n be two positive integers. If there are infinitely many integers k such that $k^{2}+2 k n+m^{2}$ is a perfect square, prove that $m=n$.

