## AoPS Community

## Baltic Way 2016

www.artofproblemsolving.com/community/c365229
by socrates

1 Find all pairs of primes $(p, q)$ such that

$$
p^{3}-q^{5}=(p+q)^{2} .
$$

2 Prove or disprove the following hypotheses.
a) For all $k \geq 2$, each sequence of $k$ consecutive positive integers contains a number that is not divisible by any prime number less than $k$.
b) For all $k \geq 2$, each sequence of $k$ consecutive positive integers contains a number that is relatively prime to all other members of the sequence.

3 For which integers $n=1, \ldots, 6$ does the equation

$$
a^{n}+b^{n}=c^{n}+n
$$

have a solution in integers?
4 Let $n$ be a positive integer and let $a, b, c, d$ be integers such that $n \mid a+b+c+d$ and $n \mid a^{2}+b^{2}+$ $c^{2}+d^{2}$.
Show that

$$
n \mid a^{4}+b^{4}+c^{4}+d^{4}+4 a b c d
$$

$5 \quad$ Let $p>3$ be a prime such that $p \equiv 3(\bmod 4)$. Given a positive integer $a_{0}$ define the sequence $a_{0}, a_{1}, \ldots$ of integers by $a_{n}=a_{n-1}^{2^{n}}$ for all $n=1,2, \ldots$. Prove that it is possible to choose $a_{0}$ such that the subsequence $a_{N}, a_{N+1}, a_{N+2}, \ldots$ is not constant modulo $p$ for any positive integer $N$.

6 The set $\{1,2, \ldots, 10\}$ is partitioned to three subsets $A, B$ and $C$. For each subset the sum of its elements, the product of its elements and the sum of the digits of all its elements are calculated.
Is it possible that $A$ alone has the largest sum of elements, $B$ alone has the largest product of elements, and $C$ alone has the largest sum of digits?
$7 \quad$ Find all positive integers $n$ for which

$$
3 x^{n}+n(x+2)-3 \geq n x^{2}
$$

holds for all real numbers $x$.

## AoPS Community

$8 \quad$ Find all real numbers $a$ for which there exists a non-constant function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following two equations for all $x \in \mathbb{R}$ :
i) $f(a x)=a^{2} f(x)$ and
ii) $f(f(x))=a f(x)$.

9 Find all quadruples ( $a, b, c, d$ ) of real numbers that simultaneously satisfy the following equations:

$$
\left\{\begin{array}{l}
a^{3}+c^{3}=2 \\
a^{2} b+c^{2} d=0 \\
b^{3}+d^{3}=1 \\
a b^{2}+c d^{2}=-6
\end{array}\right.
$$

10 Let $a_{0,1}, a_{0,2}, \ldots, a_{0,2016}$ be positive real numbers. For $n \geq 0$ and $1 \leq k<2016$ set

$$
a_{n+1, k}=a_{n, k}+\frac{1}{2 a_{n, k+1}} \text { and } a_{n+1,2016}=a_{n, 2016}+\frac{1}{2 a_{n, 1}} .
$$

Show that $\max _{1 \leq k \leq 2016} a_{2016, k}>44$.
11 Set $A$ consists of 2016 positive integers. All prime divisors of these numbers are smaller than 30. Prove that there are four distinct numbers $a, b, c$ and $d$ in $A$ such that $a b c d$ is a perfect square.

12 Does there exist a hexagon (not necessarily convex) with side lengths $1,2,3,4,5,6$ (not necessarily in this order) that can be tiled with a) 31 b) 32 equilateral triangles with side length 1 ?

13 Let $n$ numbers all equal to 1 be written on a blackboard. A move consists of replacing two numbers on the board with two copies of their sum. It happens that after $h$ moves all $n$ numbers on the blackboard are equal to $m$. Prove that $h \leq \frac{1}{2} n \log _{2} m$.

14 A cube consists of $4^{3}$ unit cubes each containing an integer. At each move, you choose a unit cube and increase by 1 all the integers in the neighbouring cubes having a face in common with the chosen cube. Is it possible to reach a position where all the $4^{3}$ integers are divisible by 3 , no matter what the starting position is?

15 The Baltic Sea has 2016 harbours. There are two-way ferry connections between some of them. It is impossible to make a sequence of direct voyages $C_{1}-C_{2}-\ldots-C_{1062}$ where all the harbours $C_{1}, \ldots, C_{1062}$ are distinct. Prove that there exist two disjoint sets $A$ and $B$ of 477 harbours each, such that there is no harbour in $A$ with a direct ferry connection to a harbour in $B$.

16 In triangle $A B C$, the points $D$ and $E$ are the intersections of the angular bisectors from $C$ and $B$ with the sides $A B$ and $A C$, respectively. Points $F$ and $G$ on the extensions of $A B$ and $A C$ beyond $B$ and $C$, respectively, satisfy $B F=C G=B C$. Prove that $F G \| D E$.

17 Let $A B C D$ be a convex quadrilateral with $A B=A D$. Let $T$ be a point on the diagonal $A C$ such that $\angle A B T+\angle A D T=\angle B C D$. Prove that $A T+A C \geq A B+A D$.

18 Let $A B C D$ be a parallelogram such that $\angle B A D=60^{\circ}$. Let $K$ and $L$ be the midpoints of $B C$ and $C D$, respectively. Assuming that $A B K L$ is a cyclic quadrilateral, find $\angle A B D$.

19 Consider triangles in the plane where each vertex has integer coordinates. Such a triangle can be legally transformed by moving one vertex parallel to the opposite side to a different point with integer coordinates. Show that if two triangles have the same area, then there exists a series of legal transformations that transforms one to the other.

20 Let $A B C D$ be a cyclic quadrilateral with $A B$ and $C D$ not parallel. Let $M$ be the midpoint of $C D$. Let $P$ be a point inside $A B C D$ such that $P A=P B=C M$. Prove that $A B, C D$ and the perpendicular bisector of $M P$ are concurrent.

