AoPS Community

National Science Olympiad 2012

www.artofproblemsolving.com/community/c3653
by nivotko, delegat

Day 1

1 Show that for any positive integers a and b, the number

$$
n=\operatorname{LCM}(a, b)+\operatorname{GCD}(a, b)-a-b
$$

is an even non-negative integer.
Proposer: Nanang Susyanto
2 Let $n \geq 3$ be an integer, and let $a_{2}, a_{3}, \ldots, a_{n}$ be positive real numbers such that $a_{2} a_{3} \cdots a_{n}=1$. Prove that

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \cdots\left(1+a_{n}\right)^{n}>n^{n} .
$$

Proposed by Angelo Di Pasquale, Australia

$3 \quad$ Given an acute triangle $A B C$ with $A B>A C$ that has circumcenter O. Line $B O$ and $C O$ meet the bisector of $\angle B A C$ at P and Q, respectively. Moreover, line $B Q$ and $C P$ meet at R. Show that $A R$ is perpendicular to $B C$.

Proposer: Soewono and Fajar Yuliawan

4 Given 2012 distinct points $A_{1}, A_{2}, \ldots, A_{2012}$ on the Cartesian plane. For any permutation $B_{1}, B_{2}, \ldots, B_{2012}$ of $A_{1}, A_{2}, \ldots, A_{2012}$ define the shadow of a point P as follows: [i]Point P is rotated by 180° around B_{1} resulting P_{1}, point P_{1} is rotated by 180° around B_{2} resulting P_{2}, \ldots, point P_{2011} is rotated by 180° around B_{2012} resulting P_{2012}. Then, P_{2012} is called the shadow of P with respect to the permutation $B_{1}, B_{2}, \ldots, B_{2012}$. $\left./ \mathrm{i}\right]$
Let N be the number of different shadows of P up to all permutations of $A_{1}, A_{2}, \ldots, A_{2012}$. Determine the maximum value of N.

Proposer: Hendrata Dharmawan

Day 2

$1 \quad$ Given positive integers m and n. Let P and Q be two collections of $m \times n$ numbers of 0 and 1 , arranged in m rows and n columns. An example of such collections for $m=3$ and $n=4$ is

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Let those two collections satisfy the following properties:
(i) On each row of P, from left to right, the numbers are non-increasing,
(ii) On each column of Q, from top to bottom, the numbers are non-increasing,
(iii) The sum of numbers on the row in P equals to the same row in Q,
(iv) The sum of numbers on the column in P equals to the same column in Q.

Show that the number on row i and column j of P equals to the number on row i and column j of Q for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$.
Proposer: Stefanus Lie
$2 \quad$ Let \mathbb{R}^{+}be the set of all positive real numbers. Show that there is no function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ satisfying

$$
f(x+y)=f(x)+f(y)+\frac{1}{2012}
$$

for all positive real numbers x and y.
Proposer: Fajar Yuliawan
3 Let n be a positive integer. Show that the equation

$$
\sqrt{x}+\sqrt{y}=\sqrt{n}
$$

have solution of pairs of positive integers (x, y) if and only if n is divisible by some perfect square greater than 1.

Proposer: Nanang Susyanto

4 Given a triangle $A B C$, let the bisector of $\angle B A C$ meets the side $B C$ and circumcircle of triangle $A B C$ at D and E, respectively. Let M and N be the midpoints of $B D$ and $C E$, respectively. Circumcircle of triangle $A B D$ meets $A N$ at Q. Circle passing through A that is tangent to $B C$ at D meets line $A M$ and side $A C$ respectively at P and R. Show that the four points B, P, Q, R lie on the same line.

Proposer: Fajar Yuliawan

