AoPS Community

National Science Olympiad 2013

www.artofproblemsolving.com/community/c3654
by chaotic_iak

Day 1

1 In a 4×6 grid, all edges and diagonals are drawn (see attachment). Determine the number of parallelograms in the grid that uses only the line segments drawn and none of its four angles are right.

2 Let $A B C$ be an acute triangle and ω be its circumcircle. The bisector of $\angle B A C$ intersects ω at [another point] M. Let P be a point on $A M$ and inside $\triangle A B C$. Lines passing P that are parallel to $A B$ and $A C$ intersects $B C$ on E, F respectively. Lines $M E, M F$ intersects ω at points K, L respectively. Prove that $A M, B L, C K$ are concurrent.

3 Determine all positive real M such that for any positive reals a, b, c, at least one of $a+\frac{M}{a b}, b+$ $\frac{M}{b c}, c+\frac{M}{c a}$ is greater than or equal to $1+M$.
$4 \quad$ Suppose $p>3$ is a prime number and

$$
S=\sum_{2 \leq i<j<k \leq p-1} i j k
$$

Prove that $S+1$ is divisible by p.

Day 2

5 Let P be a quadratic (polynomial of degree two) with a positive leading coefficient and negative discriminant. Prove that there exists three quadratics P_{1}, P_{2}, P_{3} such that:

- $P(x)=P_{1}(x)+P_{2}(x)+P_{3}(x)$
- P_{1}, P_{2}, P_{3} have positive leading coefficients and zero discriminants (and hence each has a double root)
- The roots of P_{1}, P_{2}, P_{3} are different

6 A positive integer n is called "strong" if there exists a positive integer x such that $x^{n x}+1$ is divisible by 2^{n}.
a. Prove that 2013 is strong.
b. If m is strong, determine the smallest y (in terms of m) such that $y^{m y}+1$ is divisible by 2^{m}.

7 Let $A B C D$ be a parallelogram. Construct squares $A B C_{1} D_{1}, B C D_{2} A_{2}, C D A_{3} B_{3}, D A B_{4} C_{4}$ on the outer side of the parallelogram. Construct a square having $B_{4} D_{1}$ as one of its sides and it is on the outer side of $A B_{4} D_{1}$ and call its center O_{A}. Similarly do it for $C_{1} A_{2}, D_{2} B_{3}, A_{3} C_{4}$ to obtain O_{B}, O_{C}, O_{D}. Prove that $A O_{A}=B O_{B}=C O_{C}=D O_{D}$.

8 Let A be a set of positive integers. A is called "balanced" if [and only if] the number of 3-element subsets of A whose elements add up to a multiple of 3 is equal to the number of 3 -element subsets of A whose elements add up to not a multiple of 3 .
a. Find a 9-element balanced set.
b. Prove that no set of 2013 elements can be balanced.

