Art of Problem Solving

AoPS Community

National Science Olympiad 2014

www.artofproblemsolving.com/community/c3655
by chaotic_iak

Day 1

1 Is it possible to fill a 3×3 grid with each of the numbers $1,2, \ldots, 9$ once each such that the sum of any two numbers sharing a side is prime?

2 For some positive integers m, n, the system $x+y^{2}=m$ and $x^{2}+y=n$ has exactly one integral solution (x, y). Determine all possible values of $m-n$.

3 Let $A B C D$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $A B<C D$. Suppose that $A C$ and $B D$ meet at E and $A D$ and $B C$ meet at F. Construct the parallelograms $A E D K$ and $B E C L$. Prove that $E F$ passes through the midpoint of the segment $K L$.

4 Determine all polynomials with integral coefficients $P(x)$ such that if a, b, c are the sides of a right-angled triangle, then $P(a), P(b), P(c)$ are also the sides of a right-angled triangle. (Sides of a triangle are necessarily positive. Note that it's not necessary for the order of sides to be preserved; if c is the hypotenuse of the first triangle, it's not necessary that $P(c)$ is the hypotenuse of the second triangle, and similar with the others.)

Day 2

1 A sequence of positive integers a_{1}, a_{2}, \ldots satisfies $a_{k}+a_{l}=a_{m}+a_{n}$ for all positive integers k, l, m, n satisfying $k l=m n$. Prove that if p divides q then $a_{p} \leq a_{q}$.

2 Let $A B C$ be a triangle. Suppose D is on $B C$ such that $A D$ bisects $\angle B A C$. Suppose M is on $A B$ such that $\angle M D A=\angle A B C$, and N is on $A C$ such that $\angle N D A=\angle A C B$. If $A D$ and $M N$ intersect on P, prove that $A D^{3}=A B \cdot A C \cdot A P$.

3 Suppose that k, m, n are positive integers with $k \leq n$. Prove that:

$$
\sum_{r=0}^{m} \frac{k\binom{m}{r}\binom{n}{k}}{(r+k)\binom{m+n}{r+k}}=1
$$

4 A positive integer is called beautiful if it can be represented in the form $\frac{x^{2}+y^{2}}{x+y}$ for two distinct positive integers x, y. A positive integer that is not beautiful is $u g l y$.
a) Prove that 2014 is a product of a beautiful number and an ugly number.
b) Prove that the product of two ugly numbers is also ugly.

