2014 Indonesia MO

AoPS Community

National Science Olympiad 2014

www.artofproblemsolving.com/community/c3655 by chaotic_iak

Day 1	
1	Is it possible to fill a 3×3 grid with each of the numbers $1, 2, \ldots, 9$ once each such that the sum of any two numbers sharing a side is prime?
2	For some positive integers m, n , the system $x + y^2 = m$ and $x^2 + y = n$ has exactly one integral solution (x, y) . Determine all possible values of $m - n$.
3	Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that AC and BD meet at E and AD and BC meet at F . Construct the parallelograms $AEDK$ and $BECL$. Prove that EF passes through the midpoint of the segment KL .
4	Determine all polynomials with integral coefficients $P(x)$ such that if a, b, c are the sides of a right-angled triangle, then $P(a), P(b), P(c)$ are also the sides of a right-angled triangle. (Sides of a triangle are necessarily positive. Note that it's not necessary for the order of sides to be preserved; if c is the hypotenuse of the first triangle, it's not necessary that $P(c)$ is the hypotenuse of the second triangle, and similar with the others.)
Day 2	
1	A sequence of positive integers a_1, a_2, \ldots satisfies $a_k + a_l = a_m + a_n$ for all positive integers k, l, m, n satisfying $kl = mn$. Prove that if p divides q then $a_p \le a_q$.
2	Let <i>ABC</i> be a triangle. Suppose <i>D</i> is on <i>BC</i> such that <i>AD</i> bisects $\angle BAC$. Suppose <i>M</i> is on <i>AB</i> such that $\angle MDA = \angle ABC$, and <i>N</i> is on <i>AC</i> such that $\angle NDA = \angle ACB$. If <i>AD</i> and <i>MN</i> intersect on <i>P</i> , prove that $AD^3 = AB \cdot AC \cdot AP$.
3	Suppose that k, m, n are positive integers with $k \leq n$. Prove that:
	$\sum_{r=0}^{m} \frac{k\binom{m}{r}\binom{n}{k}}{(r+k)\binom{m+n}{r+k}} = 1$

4 A positive integer is called *beautiful* if it can be represented in the form $\frac{x^2 + y^2}{x + y}$ for two distinct positive integers x, y. A positive integer that is not beautiful is *ugly*.

AoPS Community

- a) Prove that $2014~{\rm is}$ a product of a beautiful number and an ugly number.
- b) Prove that the product of two ugly numbers is also ugly.

Act of Problem Solving is an ACS WASC Accredited School.