

AoPS Community

2016 Azerbaijan BMO TST

Azerbaijan BMO TST 2016

www.artofproblemsolving.com/community/c365588 by gavrilos, IstekOlympiadTeam, henderson, tenplusten

- TST 1

1 A line is called *good* if it bisects perimeter and area of a figure at the same time.Prove that:

a) all of the good lines in a triangle concur.

b) all of the good lines in a regular polygon concur too.

- **2** Set *A* consists of natural numbers such that these numbers can be expressed as $2x^2 + 3y^2$, where *x* and *y* are integers. $(x^2 + y^2 \neq 0) a)$ Prove that there is no perfect square in the set *A*. *b*) Prove that multiple of odd number of elements of the set *A* cannot be a perfect square.
- **3** k is a positive integer. A company has a special method to sell clocks. Every customer can reason with two customers after he has bought a clock himself; it's not allowed to reason with an agreed person. These new customers can reason with other two persons and it goes like this.. If both of the customers agreed by a person could play a role (it can be directly or not) in buying clocks by at least k customers, this person gets a present. Prove that, if n persons have bought clocks, then at most $\frac{n}{k+2}$ presents have been accepted.
- **4** Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that

$$f(f(n)) = n + 2015$$

where $n \in \mathbb{N}$.

- TST 3
- **1** Find all *n* natural numbers such that for each of them there exist *p*, *q* primes such that these terms satisfy.

1. p + 2 = q 2. $2^n + p$ and $2^n + q$ are primes.

- **2** n triangle ABC the bisector of $\angle BAC$ intersects the side BC at the point D. The circle ω passes through A and tangent to the side BC at D.AC and ω intersects at M second time, BM and ω intersects at P second time. Prove that point P lies on median of triangle ABD.
- **3** There are some checkers in $n \cdot n$ size chess board.Known that for all numbers $1 \le i, j \le n$ if checkwork in the intersection of *i* th row and *j* th column is empty,so the number of checkers that are in this row and column is at least *n*.Prove that there are at least $\frac{n^2}{2}$ checkers in chess board.

AoPS Community

4	For all numbers $n \ge 1$ does there exist infinite positive numbers sequence $x_1, x_2,, x_n$ such that $x_{n+2} = \sqrt{x_{n+1}} - \sqrt{x_n}$
-	TST 4
1	Let a, b, c be nonnegative real numbers. Prove that $3(a^2 + b^2 + c^2) \ge (a + b + c)(\sqrt{ab} + \sqrt{bc} + \sqrt{ca}) + (a - b)^2 + (b - c)^2 + (c - a)^2 \ge (a + b + c)^2$.
2	There are 100 students who praticipate at exam. Also there are 25 members of jury. Each student is checked by one jury. Known that every student likes 10 jury a) Prove that we can select 7 jury such that any student likes at least one jury. b) Prove that we can make this every student will be checked by the jury that he likes and every jury will check at most 10 students.
3	a, b are positive integers and $(a! + b!) a!b!$. Prove that $3a \ge 2b + 2$.
4	Let ABC be an acute triangle and let M be the midpoint of AC . A circle ω passing through B and M meets the sides AB and BC at points P and Q respectively. Let T be the point such that $BPTQ$ is a parallelogram. Suppose that T lies on the circumcircle of ABC . Determine all possible values of $\frac{BT}{BM}$.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱 Art of Problem Solving is an ACS WASC Accredited School.