AoPS Community

Korea National Olympiad 2016

www.artofproblemsolving.com/community/c365750
by Hypernova, rkm0959

- Day 1

$1 \quad n$ is a positive integer. The number of solutions of $x^{2}+2016 y^{2}=2017^{n}$ is k. Write k with n.
2 A non-isosceles triangle $\triangle A B C$ has its incircle tangent to $B C, C A, A B$ at points D, E, F. Let the incenter be I. Say $A D$ hits the incircle again at G, at let the tangent to the incircle at G hit $A C$ at H. Let $I H \cap A D=K$, and let the foot of the perpendicular from I to $A D$ be L.
Prove that $I E \cdot I K=I C \cdot I L$.
$3 \quad$ Acute triangle $\triangle A B C$ has area S and perimeter L. A point P inside $\triangle A B C$ has $\operatorname{dist}(P, B C)=$ $1, \operatorname{dist}(P, C A)=1.5, \operatorname{dist}(P, A B)=2$. Let $B C \cap A P=D, C A \cap B P=E, A B \cap C P=F$.
Let T be the area of $\triangle D E F$. Prove the following inequality.

$$
\left(\frac{A D \cdot B E \cdot C F}{T}\right)^{2}>4 L^{2}+\left(\frac{A B \cdot B C \cdot C A}{24 S}\right)^{2}
$$

4 For a positive integer n, S_{n} is the set of positive integer n-tuples ($a_{1}, a_{2}, \cdots, a_{n}$) which satisfies the following.
(i). $a_{1}=1$.
(ii). $a_{i+1} \leq a_{i}+1$.

For $k \leq n$, define N_{k} as the number of n-tuples $\left(a_{1}, a_{2}, \cdots a_{n}\right) \in S_{n}$ such that $a_{k}=1, a_{k+1}=2$. Find the sum $N_{1}+N_{2}+\cdots N_{k-1}$.

- Day 2

5 A non-isosceles triangle $\triangle A B C$ has incenter I and the incircle hits $B C, C A, A B$ at D, E, F. Let $E F$ hit the circumcircle of $C E I$ at $P \neq E$. Prove that $\triangle A B C=2 \triangle A B P$.

6 For a positive integer n, there are n positive reals $a_{1} \geq a_{2} \geq a_{3} \cdots \geq a_{n}$.
For all positive reals $b_{1}, b_{2}, \cdots b_{n}$, prove the following inequality.

$$
\frac{a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}}{a_{1}+a_{2}+\cdots a_{n}} \leq \max \left\{\frac{b_{1}}{1}, \frac{b_{1}+b_{2}}{2}, \cdots, \frac{b_{1}+b_{2}+\cdots+b_{n}}{n}\right\}
$$

7 Let $N=2^{a} p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{k}^{b_{k}}$. Prove that there are $\left(b_{1}+1\right)\left(b_{2}+1\right) \ldots\left(b_{k}+1\right)$ number of n s which satisfies these two conditions. $\frac{n(n+1)}{2} \leq N, N-\frac{n(n+1)}{2}$ is divided by n.

8 A subset $S \in\{0,1,2, \cdots, 2000\}$ satisfies $|S|=401$.
Prove that there exists a positive integer n such that there are at least 70 positive integers x such that $x, x+n \in S$

