

AoPS Community

_

_

_

_

_

2016 Korea National Olympiad

Korea National Olympiad 2016

www.artofproblemsolving.com/community/c365750 by Hypernova, rkm0959

-	Day 1
1	<i>n</i> is a positive integer. The number of solutions of $x^2 + 2016y^2 = 2017^n$ is <i>k</i> . Write <i>k</i> with <i>n</i> .
2	A non-isosceles triangle $\triangle ABC$ has its incircle tangent to BC, CA, AB at points D, E, F . Let the incenter be <i>I</i> . Say <i>AD</i> hits the incircle again at <i>G</i> , at let the tangent to the incircle at <i>G</i> hit <i>AC</i> at <i>H</i> . Let $IH \cap AD = K$, and let the foot of the perpendicular from <i>I</i> to <i>AD</i> be <i>L</i> .
	Prove that $IE \cdot IK = IC \cdot IL$.
3	Acute triangle $\triangle ABC$ has area S and perimeter L . A point P inside $\triangle ABC$ has $dist(P, BC) = 1, dist(P, CA) = 1.5, dist(P, AB) = 2$. Let $BC \cap AP = D, CA \cap BP = E, AB \cap CP = F$. Let T be the area of $\triangle DEF$. Prove the following inequality.
	$\left(\frac{AD \cdot BE \cdot CF}{T}\right)^2 > 4L^2 + \left(\frac{AB \cdot BC \cdot CA}{24S}\right)^2$
4	For a positive integer n , S_n is the set of positive integer n -tuples (a_1, a_2, \cdots, a_n) which satisfies the following.
	(i). $a_1 = 1$.
	(ii). $a_{i+1} \le a_i + 1$.
	For $k \leq n$, define N_k as the number of <i>n</i> -tuples $(a_1, a_2, \cdots a_n) \in S_n$ such that $a_k = 1, a_{k+1} = 2$.
	Find the sum $N_1 + N_2 + \cdots N_{k-1}$.
-	Day 2
5	A non-isosceles triangle $\triangle ABC$ has incenter <i>I</i> and the incircle hits <i>BC</i> , <i>CA</i> , <i>AB</i> at <i>D</i> , <i>E</i> , <i>F</i> . Let <i>EF</i> hit the circumcircle of <i>CEI</i> at $P \neq E$. Prove that $\triangle ABC = 2\triangle ABP$.
6	For a positive integer n , there are n positive reals $a_1 \ge a_2 \ge a_3 \cdots \ge a_n$. For all positive reals b_1, b_2, \cdots , b_n , prove the following inequality.
	ablabl lab bbl bl b

$$\frac{a_1b_1 + a_2b_2 + \dots + a_nb_n}{a_1 + a_2 + \dots + a_n} \le \max\{\frac{b_1}{1}, \frac{b_1 + b_2}{2}, \dots, \frac{b_1 + b_2 + \dots + b_n}{n}\}$$

AoPS Community

_

7	Let $N = 2^a p_1^{b_1} p_2^{b_2} \dots p_k^{b_k}$. Prove that there are $(b_1 + 1)(b_2 + 1) \dots (b_k + 1)$ number of n s which satisfies these two conditions. $\frac{n(n+1)}{2} \leq N$, $N - \frac{n(n+1)}{2}$ is divided by n .
8	A subset $S \in \{0, 1, 2, \cdots, 2000\}$ satisfies $ S = 401$.
	Prove that there exists a positive integer n such that there are at least 70 positive integers x such that $x, x + n \in S$

Act of Problem Solving is an ACS WASC Accredited School.