

AoPS Community

2007 Bosnia Herzegovina Team Selection Test

Bosnia Herzegovina Team Selection Test 2007

www.artofproblemsolving.com/community/c3659 by gobathegreat

Day 1

1	Let <i>ABC</i> be a triangle such that length of internal angle bisector from <i>B</i> is equal to <i>s</i> . Also, length of external angle bisector from <i>B</i> is equal to s_1 . Find area of triangle <i>ABC</i> if $\frac{AB}{BC} = k$
2	Find all pairs of integers (x, y) such that $x(x + 2) = y^2(y^2 + 1)$
3	Find all $x \in \mathbb{Z}$ and $a \in \mathbb{R}$ satisfying
	$\sqrt{x^2 - 4} + \sqrt{x + 2} = \sqrt{x - a} + a$

Day 2

- 4 Let P(x) be a polynomial such that $P(x) = x^3 2x^2 + bx + c$. Roots of P(x) belong to interval (0, 1). Prove that $8b + 9c \le 8$. When does equality hold?
- **5** Triangle *ABC* is right angled such that $\angle ACB = 90^{\circ}$ and $\frac{AC}{BC} = 2$. Let the line parallel to side *AC* intersects line segments *AB* and *BC* in *M* and *N* such that $\frac{CN}{BN} = 2$. Let *O* be the intersection point of lines *CM* and *AN*. On segment *ON* lies point *K* such that OM + OK = KN. Let *T* be the intersection point of angle bisector of $\angle ABC$ and line from *K* perpendicular to *AN*. Determine value of $\angle MTB$.
- **6** The set *A* has exactly n > 4 elements. Ann chooses n + 1 distinct subsets of *A*, such that every subset has exactly 3 elements. Prove that there exist two subsets chosen by Ann which have exactly one common element.

Art of Problem Solving is an ACS WASC Accredited School.