Art of Problem Solving

AoPS Community

Bosnia Herzegovina Team Selection Test 2007

www.artofproblemsolving.com/community/c3659
by gobathegreat

Day 1

1 Let $A B C$ be a triangle such that length of internal angle bisector from B is equal to s. Also, length of external angle bisector from B is equal to s_{1}. Find area of triangle $A B C$ if $\frac{A B}{B C}=k$

2 Find all pairs of integers (x, y) such that $x(x+2)=y^{2}\left(y^{2}+1\right)$
$3 \quad$ Find all $x \in \mathbb{Z}$ and $a \in \mathbb{R}$ satisfying

$$
\sqrt{x^{2}-4}+\sqrt{x+2}=\sqrt{x-a}+a
$$

Day 2

4 Let $P(x)$ be a polynomial such that $P(x)=x^{3}-2 x^{2}+b x+c$. Roots of $P(x)$ belong to interval $(0,1)$. Prove that $8 b+9 c \leq 8$. When does equality hold?

5 Triangle $A B C$ is right angled such that $\angle A C B=90^{\circ}$ and $\frac{A C}{B C}=2$. Let the line parallel to side $A C$ intersects line segments $A B$ and $B C$ in M and N such that $\frac{C N}{B N}=2$. Let O be the intersection point of lines $C M$ and $A N$. On segment $O N$ lies point K such that $O M+O K=$ $K N$. Let T be the intersection point of angle bisector of $\angle A B C$ and line from K perpendicular to $A N$. Determine value of $\angle M T B$.
$6 \quad$ The set A has exactly $n>4$ elements. Ann chooses $n+1$ distinct subsets of A, such that every subset has exactly 3 elements. Prove that there exist two subsets chosen by Ann which have exactly one common element.

