

AoPS Community

2008 Bosnia Herzegovina Team Selection Test

Bosnia Herzegovina Team Selection Test 2008

www.artofproblemsolving.com/community/c3660 by delegat, campos

Day	1
-----	---

1	Prove that in an isosceles triangle $\triangle ABC$ with $AC = BC = b$ following inequality holds $b > \pi r_{r}$, where r is inradius.
2	Find all pairs of positive integers m and n that satisfy (both) following conditions:
	(i) $m^2 - n$ divides $m + n^2$
	(ii) $n^2 - m$ divides $n + m^2$
3	30 persons are sitting at round table. $30 - N$ of them always speak true ("true speakers") while the other N of them sometimes speak true sometimes not ("lie speakers"). Question: "Who is your right neighbour - "true speaker" or "lie speaker" ?" is asked to all 30 persons and 30 answers are collected. What is maximal number N for which (with knowledge of these answers) we can always be sure (decide) about at least one person who is "true speaker".
Day 2	
1	8 students took part in exam that contains 8 questions. If it is known that each question was solved by at least 5 students, prove that we can always find 2 students such that each of

questions was solved by at least one of them.

2 Let AD be height of triangle $\triangle ABC$ and R circumradius. Denote by E and F feet of perpendiculars from point D to sides AB and AC.

If $AD = R\sqrt{2}$, prove that circumcenter of triangle $\triangle ABC$ lies on line EF.

3 Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$f(f(x) + y) = f(x^2 - y) + 4f(x)y$$

for all $x, y \in \mathbb{R}$.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.