AoPS Community

Bosnia Herzegovina Team Selection Test 2008

www.artofproblemsolving.com/community/c3660
by delegat, campos

Day 1

1 Prove that in an isosceles triangle $\triangle A B C$ with $A C=B C=b$ following inequality holds $b>\pi r$, where r is inradius.

2 Find all pairs of positive integers m and n that satisfy (both) following conditions:
(i) $m^{2}-n$ divides $m+n^{2}$
(ii) $n^{2}-m$ divides $n+m^{2}$

330 persons are sitting at round table. $30-N$ of them always speak true ("true speakers") while the other N of them sometimes speak true sometimes not ("lie speakers"). Question: "Who is your right neighbour - "true speaker" or "lie speaker" ?" is asked to all 30 persons and 30 answers are collected. What is maximal number N for which (with knowledge of these answers) we can always be sure (decide) about at least one person who is "true speaker".

Day 2

18 students took part in exam that contains 8 questions. If it is known that each question was solved by at least 5 students, prove that we can always find 2 students such that each of questions was solved by at least one of them.

2 Let $A D$ be height of triangle $\triangle A B C$ and R circumradius. Denote by E and F feet of perpendiculars from point D to sides $A B$ and $A C$.

If $A D=R \sqrt{2}$, prove that circumcenter of triangle $\triangle A B C$ lies on line $E F$.
$3 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(f(x)+y)=f\left(x^{2}-y\right)+4 f(x) y
$$

for all $x, y \in \mathbb{R}$.

