

AoPS Community

2010 Bosnia Herzegovina Team Selection Test

Bosnia Herzegovina Team Selection Test 2010

www.artofproblemsolving.com/community/c3662 by gobathegreat

Day 1 May 15th

1	a) Let p and q be distinct prime numbers such that $p+q^2$ divides p^2+q . Prove that $p+q^2$ divides $pq-1$. b) Find all prime numbers p such that $p+121$ divides p^2+11 .
2	Let AB and FD be chords in circle, which does not intersect and P point on arc AB which does not contain chord FD . Lines PF and PD intersect chord AB in Q and R . Prove that $\frac{AQ*RB}{QR}$ is constant, while point P moves along the ray AB .
3	Find all functions $f : \mathbb{Z} \mapsto \mathbb{Z}$ such that following conditions holds: a) $f(n) \cdot f(-n) = f(n^2)$ for all $n \in \mathbb{Z}$ b) $f(m+n) = f(m) + f(n) + 2mn$ for all $m, n \in \mathbb{Z}$
Day 2	May 16th
4	Convex quadrilateral is divided by diagonals into four triangles with congruent inscribed cir- cles. Prove that this quadrilateral is rhombus.
5	Let a, b and c be sides of a triangle such that $a+b+c \le 2$. Prove that $-3 < \frac{a^3}{b} + \frac{b^3}{c} + \frac{c^3}{a} - \frac{a^3}{c} - \frac{b^3}{a} - \frac{c^3}{b} + \frac{b^3}{c} + \frac{c^3}{a} - \frac{a^3}{c} - \frac{b^3}{a} - \frac{c^3}{b} + \frac{c^3}{c} + \frac{c^3}{a} - \frac{c^3}{c} + \frac{c^3}{c} - \frac{c^3}{c} + \frac{c^3}{c} + \frac{c^3}{c} + \frac{c^3}{c} - \frac{c^3}{c} + \frac{c^3}{$
6	Prove that total number of ones which is showed in all nonrestricted partitions of natural number n is equal to sum of numbers of distinct elements in that partitions.

AoPS Online AoPS Academy AoPS & Ao