

AoPS Community

2011 Bosnia Herzegovina Team Selection Test

Bosnia Herzegovina Team Selection Test 2011

www.artofproblemsolving.com/community/c3663 by RaleD

Day 1

1	In triangle <i>ABC</i> it holds $ BC = \frac{1}{2}(AB + AC)$. Let <i>M</i> and <i>N</i> be midpoints of <i>AB</i> and <i>AC</i> , and let <i>I</i> be the incenter of <i>ABC</i> . Prove that <i>A</i> , <i>M</i> , <i>I</i> , <i>N</i> are concyclic.
2	On semicircle, with diameter $ AB = d$, are given points <i>C</i> and <i>D</i> such that: $ BC = CD = a$ and $ DA = b$ where a, b, d are different positive integers. Find minimum possible value of <i>d</i>
3	Numbers 1, 2,, 2n are partitioned into two sequences $a_1 < a_2 < < a_n$ and $b_1 > b_2 > > b_n$. Prove that number $W = a_1 - b_1 + a_2 - b_2 + + a_n - b_n $
	is a perfect square.
Day 2	
1	Find maximum value of number a such that for any arrangement of numbers $1, 2,, 10$ on a circle, we can find three consecutive numbers such their sum bigger or equal than a .
2	Let a, b, c be positive reals such that $a + b + c = 1$. Prove that the inequality
	$a\sqrt[3]{1+b-c} + b\sqrt[3]{1+c-a} + c\sqrt[3]{1+a-b} \le 1$
	holds.
3	In quadrilateral <i>ABCD</i> sides <i>AD</i> and <i>BC</i> aren't parallel. Diagonals <i>AC</i> and <i>BD</i> intersect in <i>E</i> . <i>F</i> and <i>G</i> are points on sides <i>AB</i> and <i>DC</i> such $\frac{AF}{FB} = \frac{DG}{GC} = \frac{AD}{BC}$ Prove that if <i>E</i> , <i>F</i> , <i>G</i> are collinear then <i>ABCD</i> is cyclic.

Act of Problem Solving is an ACS WASC Accredited School.