AoPS Community

Bosnia Herzegovina Team Selection Test 2011

www.artofproblemsolving.com/community/c3663
by RaleD

Day 1

1 In triangle $A B C$ it holds $|B C|=\frac{1}{2}(|A B|+|A C|)$. Let M and N be midpoints of $A B$ and $A C$, and let I be the incenter of $A B C$. Prove that A, M, I, N are concyclic.

2 On semicircle, with diameter $|A B|=d$, are given points C and D such that: $|B C|=|C D|=a$ and $|D A|=b$ where a, b, d are different positive integers. Find minimum possible value of d

3 Numbers $1,2, \ldots, 2 n$ are partitioned into two sequences $a_{1}<a_{2}<\ldots<a_{n}$ and $b_{1}>b_{2}>\ldots>$ b_{n}. Prove that number

$$
W=\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\ldots+\left|a_{n}-b_{n}\right|
$$

is a perfect square.

Day 2

1 Find maximum value of number a such that for any arrangement of numbers $1,2, \ldots, 10$ on a circle, we can find three consecutive numbers such their sum bigger or equal than a.

2 Let a, b, c be positive reals such that $a+b+c=1$. Prove that the inequality

$$
a \sqrt[3]{1+b-c}+b \sqrt[3]{1+c-a}+c \sqrt[3]{1+a-b} \leq 1
$$

holds.
3 In quadrilateral $A B C D$ sides $A D$ and $B C$ aren't parallel. Diagonals $A C$ and $B D$ intersect in E. F and G are points on sides $A B$ and $D C$ such $\frac{A F}{F B}=\frac{D G}{G C}=\frac{A D}{B C}$ Prove that if E, F, G are collinear then $A B C D$ is cyclic.

