AoPS Community

Bosnia Herzegovina Team Selection Test 2012

www.artofproblemsolving.com/community/c3664
by teps

Day 1

1 Let D be the midpoint of the arc $B-A-C$ of the circumcircle of $\triangle A B C(A B<A C)$. Let E be the foot of perpendicular from D to $A C$. Prove that $|C E|=\frac{|B A|+|A C|}{2}$.

2 Prove for all positive real numbers a, b, c, such that $a^{2}+b^{2}+c^{2}=1$:

$$
\frac{a^{3}}{b^{2}+c}+\frac{b^{3}}{c^{2}+a}+\frac{c^{3}}{a^{2}+b} \geq \frac{\sqrt{3}}{1+\sqrt{3}} .
$$

3 Prove that for all odd prime numbers p there exist a natural number $m<p$ and integers x_{1}, x_{2}, x_{3} such that:

$$
m p=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}
$$

Day 2

4 Define a function $f: \mathbb{N} \rightarrow \mathbb{N}$,

$$
\begin{gathered}
f(1)=p+1 \\
f(n+1)=f(1) \cdot f(2) \cdots f(n)+p
\end{gathered}
$$

where p is a prime number. Find all p such that there exists a natural number k such that $f(k)$ is a perfect square.

5 Given is a triangle $\triangle A B C$ and points M and K on lines $A B$ and $C B$ such that $A M=A C=$ $C K$. Prove that the length of the radius of the circumcircle of triangle $\triangle B K M$ is equal to the lenght $O I$, where O and I are centers of the circumcircle and the incircle of $\triangle A B C$, respectively. Also prove that $O I \perp M K$.

6 A unit square is divided into polygons, so that all sides of a polygon are parallel to sides of the given square. If the total length of the segments inside the square (without the square) is $2 n$ (where n is a positive real number), prove that there exists a polygon whose area is greater than $\frac{1}{(n+1)^{2}}$.

