AoPS Community

Bosnia Herzegovina Team Selection Test 2013

www.artofproblemsolving.com/community/c3665
by Math-lover123

Day 1

1 Triangle $A B C$ is right angled at C. Lines $A M$ and $B N$ are internal angle bisectors. $A M$ and $B N$ intersect altitude $C H$ at points P and Q respectively.
Prove that the line which passes through the midpoints of segments $Q N$ and $P M$ is parallel to $A B$.

2 The sequence a_{n} is defined by $a_{0}=a_{1}=1$ and $a_{n+1}=14 a_{n}-a_{n-1}-4$,for all positive integers n.
Prove that all terms of this sequence are perfect squares.
3 Prove that in the set consisting of $\binom{2 n}{n}$ people we can find a group of $n+1$ people in which everyone knows everyone or noone knows noone.

Day 2

4 Find all primes p, q such that p divides $30 q-1$ and q divides $30 p-1$.
5 Let $x_{1}, x_{2}, \ldots, x_{n}$ be nonnegative real numbers of sum equal to 1 .
Let $F_{n}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}-2\left(x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n} x_{1}\right)$.
Find:
a) $\min F_{3}$;
b) $\min F_{4}$;
c) $\min F_{5}$.

6 In triangle $A B C, I$ is the incenter. We have chosen points P, Q, R on segments $I A, I B, I C$ respectively such that $I P \cdot I A=I Q \cdot I B=I R \cdot I C$.
Prove that the points I and O belong to Euler line of triangle $P Q R$ where O is circumcenter of $A B C$.

