

AoPS Community

2013 Bosnia Herzegovina Team Selection Test

Bosnia Herzegovina Team Selection Test 2013

www.artofproblemsolving.com/community/c3665 by Math-lover123

Day 1	
1	Triangle ABC is right angled at C . Lines AM and BN are internal angle bisectors. AM and BN intersect altitude CH at points P and Q respectively. Prove that the line which passes through the midpoints of segments QN and PM is parallel to AB .
2	The sequence a_n is defined by $a_0 = a_1 = 1$ and $a_{n+1} = 14a_n - a_{n-1} - 4$, for all positive integers n . Prove that all terms of this sequence are perfect squares.
3	Prove that in the set consisting of $\binom{2n}{n}$ people we can find a group of $n + 1$ people in which everyone knows everyone or noone knows noone.
Day 2	
4	Find all primes p, q such that p divides $30q - 1$ and q divides $30p - 1$.
5	Let $x_1, x_2,, x_n$ be nonnegative real numbers of sum equal to 1. Let $F_n = x_1^2 + x_2^2 + \dots + x_n^2 - 2(x_1x_2 + x_2x_3 + \dots + x_nx_1)$. Find: a) min F_3 ; b) min F_4 ; c) min F_5 .
6	In triangle <i>ABC</i> , <i>I</i> is the incenter. We have chosen points <i>P</i> , <i>Q</i> , <i>R</i> on segments <i>IA</i> , <i>IB</i> , <i>IC</i> respectively such that $IP \cdot IA = IQ \cdot IB = IR \cdot IC$. Prove that the points <i>I</i> and <i>O</i> belong to Euler line of triangle <i>PQR</i> where <i>O</i> is circumcenter of <i>ABC</i> .

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱