AoPS Community

Bosnia Herzegovina Team Selection Test 2014

www.artofproblemsolving.com/community/c3666
by gobathegreat

Day 1 May 10th

$1 \quad$ Let k be the circle and A and B points on circle which are not diametrically opposite. On minor $\operatorname{arc} A B$ lies point arbitrary point C. Let D, E and F be foots of perpendiculars from C on chord $A B$ and tangents of circle k in points A and B. Prove that $C D=\sqrt{C E \cdot C F}$

2 Let a, b and c be distinct real numbers. a) Determine value of $\frac{1+a b}{a-b} \cdot \frac{1+b c}{b-c}+\frac{1+b c}{b-c} \cdot \frac{1+c a}{c-a}+\frac{1+c a}{c-a} \cdot \frac{1+a b}{a-b}$
b) Determine value of $\frac{1-a b}{a-b} \cdot \frac{1-b c}{b-c}+\frac{1-b c}{b-c} \cdot \frac{1-c a}{c-a}+\frac{1-c a}{c-a} \cdot \frac{1-a b}{a-b}$
c) Prove the following ineqaulity $\frac{1+a^{2} b^{2}}{(a-b)^{2}}+\frac{1+b^{2} c^{2}}{(b-c)^{2}}+\frac{1+c^{2} a^{2}}{(c-a)^{2}} \geq \frac{3}{2}$

When does eqaulity holds?
3 Find all nonnegative integer numbers such that $7^{x}-2 \cdot 5^{y}=-1$
Day 2 May 11th
1 Sequence a_{n} is defined by $a_{1}=\frac{1}{2}, a_{m}=\frac{a_{m-1}}{2 m \cdot a_{m-1}+1}$ for $m>1$. Determine value of $a_{1}+a_{2}+\ldots+a_{k}$ in terms of k, where k is positive integer.

2 It is given regular n-sided polygon, $n \geq 6$. How many triangles they are inside the polygon such that all of their sides are formed by diagonals of polygon and their vertices are vertices of polygon?
$3 \quad$ Let D and E be foots of altitudes from A and B of triangle $A B C, F$ be intersection point of angle bisector from C with side $A B$, and O, I and H be circumcenter, center of inscribed circle and orthocenter of triangle $A B C$, respectively. If $\frac{C F}{A D}+\frac{C F}{B E}=2$, prove that $O I=I H$.

