

AoPS Community

2014 Bosnia Herzegovina Team Selection Test

Bosnia Herzegovina Team Selection Test 2014

www.artofproblemsolving.com/community/c3666 by gobathegreat

Day 1 May 10th

1	Let k be the circle and A and B points on circle which are not diametrically opposite. On minor arc AB lies point arbitrary point C. Let D, E and F be foots of perpendiculars from C on chord AB and tangents of circle k in points A and B. Prove that $CD = \sqrt{CE \cdot CF}$
2	Let a , b and c be distinct real numbers. a) Determine value of $\frac{1+ab}{a-b} \cdot \frac{1+bc}{b-c} + \frac{1+bc}{b-c} \cdot \frac{1+ca}{c-a} + \frac{1+ca}{c-a} \cdot \frac{1+ab}{a-b}$
	b) Determine value of $\frac{1-ab}{a-b} \cdot \frac{1-bc}{b-c} + \frac{1-bc}{b-c} \cdot \frac{1-ca}{c-a} + \frac{1-ca}{c-a} \cdot \frac{1-ab}{a-b}$
	c) Prove the following ineqaulity $\frac{1+a^2b^2}{(a-b)^2} + \frac{1+b^2c^2}{(b-c)^2} + \frac{1+c^2a^2}{(c-a)^2} \ge \frac{3}{2}$
	When does eqaulity holds?
3	Find all nonnegative integer numbers such that $7^x - 2 \cdot 5^y = -1$
Day 2	May 11th
1	Sequence a_n is defined by $a_1 = \frac{1}{2}$, $a_m = \frac{a_{m-1}}{2m \cdot a_{m-1}+1}$ for $m > 1$. Determine value of $a_1 + a_2 + \ldots + a_k$ in terms of k , where k is positive integer.
1 2	Sequence a_n is defined by $a_1 = \frac{1}{2}$, $a_m = \frac{a_{m-1}}{2m \cdot a_{m-1}+1}$ for $m > 1$. Determine value of $a_1 + a_2 + + a_k$ in terms of k , where k is positive integer. It is given regular <i>n</i> -sided polygon, $n \ge 6$. How many triangles they are inside the polygon such that all of their sides are formed by diagonals of polygon and their vertices are vertices of polygon?

Act of Problem Solving is an ACS WASC Accredited School.