AoPS Community

China Girls Math Olympiad 2002
www.artofproblemsolving.com/community/c3667
by orl, Valentin Vornicu

Day 1

1 Find all positive integers n such $20 n+2$ can divide $2003 n+2002$.
2 There are $3 n, n \in \mathbb{Z}^{+}$girl students who took part in a summer camp. There were three girl students to be on duty every day. When the summer camp ended, it was found that any two of the $3 n$ students had just one time to be on duty on the same day.
(1) When $n=3$, is there any arrangement satisfying the requirement above. Prove yor conclusion.
(2) Prove that n is an odd number.

3 Find all positive integers k such that for any positive numbers a, b and c satisfying the inequality

$$
k(a b+b c+c a)>5\left(a^{2}+b^{2}+c^{2}\right),
$$

there must exist a triangle with a, b and c as the length of its three sides respectively.
4 Circles O_{1} and O_{2} interest at two points B and C, and $B C$ is the diameter of circle O_{1}. Construct a tangent line of circle O_{1} at C and intersecting circle O_{2} at another point A. We join $A B$ to intersect circle O_{1} at point E, then join $C E$ and extend it to intersect circle O_{2} at point F. Assume H is an arbitrary point on line segment $A F$. We join $H E$ and extend it to intersect circle O_{1} at point G, and then join $B G$ and extend it to intersect the extend line of $A C$ at point D. Prove that

$$
\frac{A H}{H F}=\frac{A C}{C D} .
$$

Day 2

5 There are $n \geq 2$ permutations $P_{1}, P_{2}, \ldots, P_{n}$ each being an arbitrary permutation of $\{1, \ldots, n\}$. Prove that

$$
\sum_{i=1}^{n-1} \frac{1}{P_{i}+P_{i+1}}>\frac{n-1}{n+2}
$$

6 Find all pairs of positive integers (x, y) such that

$$
x^{y}=y^{x-y} .
$$

Albania
7 An acute triangle $A B C$ has three heights $A D, B E$ and $C F$ respectively. Prove that the perimeter of triangle $D E F$ is not over half of the perimeter of triangle $A B C$.

8 Assume that $A_{1}, A_{2}, \ldots, A_{8}$ are eight points taken arbitrarily on a plane. For a directed line l taken arbitrarily on the plane, assume that projections of $A_{1}, A_{2}, \ldots, A_{8}$ on the line are $P_{1}, P_{2}, \ldots, P_{8}$ respectively. If the eight projections are pairwise disjoint, they can be arranged as $P_{i_{1}}, P_{i_{2}}, \ldots, P_{i_{8}}$ according to the direction of line l. Thus we get one permutation for $1,2, \ldots, 8$, namely, $i_{1}, i_{2}, \ldots, i_{8}$. In the figure, this permutation is $2,1,8,3,7,4,6,5$. Assume that after these eight points are projected to every directed line on the plane, we get the number of different permutations as $N_{8}=N\left(A_{1}, A_{2}, \ldots, A_{8}\right)$. Find the maximal value of N_{8}.

