Art of Problem Solving

AoPS Community

China Girls Math Olympiad 2003
www.artofproblemsolving.com/community/c3668
by orl

Day 1

1 Let $A B C$ be a triangle. Points D and E are on sides $A B$ and $A C$, respectively, and point F is on line segment $D E$. Let $\frac{A D}{A B}=x, \frac{A E}{A C}=y, \frac{D F}{D E}=z$. Prove that
(1) $S_{\triangle B D F}=(1-x) y S_{\triangle A B C}$ and $S_{\triangle C E F}=x(1-y)(1-z) S_{\triangle A B C}$;
(2) $\sqrt[3]{S_{\triangle B D F}}+\sqrt[3]{S_{\triangle C E F}} \leq \sqrt[3]{S_{\triangle A B C}}$.

2 There are 47 students in a classroom with seats arranged in 6 rows $\times 8$ columns, and the seat in the i-th row and j-th column is denoted by (i, j). Now, an adjustment is made for students seats in the new school term. For a student with the original seat (i, j), if his/her new seat is (m, n), we say that the student is moved by $[a, b]=[i-m, j-n]$ and define the position value of the student as $a+b$. Let S denote the sum of the position values of all the students. Determine the difference between the greatest and smallest possible values of S.

3 As shown in the figure, quadrilateral $A B C D$ is inscribed in a circle with $A C$ as its diameter, $B D \perp A C$, and E the intersection of $A C$ and $B D$. Extend line segment $D A$ and $B A$ through A to F and G respectively, such that $D G \| B F$. Extend $G F$ to H such that $C H \perp G H$. Prove that points B, E, F and H lie on one circle.

4 (1) Prove that there exist five nonnegative real numbers a, b, c, d and e with their sum equal to 1 such that for any arrangement of these numbers around a circle, there are always two neighboring numbers with their product not less than $\frac{1}{9}$.
(2) Prove that for any five nonnegative real numbers with their sum equal to 1 , it is always possible to arrange them around a circle such that there are two neighboring numbers with their product not greater than $\frac{1}{9}$.

Day 2

5 Let $\left\{a_{n}\right\}_{1}^{\infty}$ be a sequence of real numbers such that $a_{1}=2$, and

$$
a_{n+1}=a_{n}^{2}-a_{n}+1, \forall n \in \mathbb{N}
$$

Prove that

$$
1-\frac{1}{2003^{2003}}<\sum_{i=1}^{2003} \frac{1}{a_{i}}<1
$$

6 Let $n \geq 2$ be an integer. Find the largest real number λ such that the inequality

$$
a_{n}^{2} \geq \lambda \sum_{i=1}^{n-1} a_{i}+2 \cdot a_{n}
$$

holds for any positive integers $a_{1}, a_{2}, \ldots a_{n}$ satisfying $a_{1}<a_{2}<\ldots<a_{n}$.
7 Let the sides of a scalene triangle $\triangle A B C$ be $A B=c, B C=a, C A=b$, and D, E, F be points on $B C, C A, A B$ such that $A D, B E, C F$ are angle bisectors of the triangle, respectively. Assume that $D E=D F$. Prove that
(1) $\frac{a}{b+c}=\frac{b}{c+a}+\frac{c}{a+b}$
(2) $\angle B A C>90^{\circ}$.

8 Let n be a positive integer, and S_{n}, be the set of all positive integer divisors of n (including 1 and itself). Prove that at most half of the elements in S_{n} have their last digits equal to 3 .

