

AoPS Community

2004 China Girls Math Olympiad

China Girls Math Olympiad 2004

www.artofproblemsolving.com/community/c3669 by April

Day 1

1	We say a positive integer n is <i>good</i> if there exists a permutation a_1, a_2, \ldots, a_n of $1, 2, \ldots, n$ such that $k + a_k$ is perfect square for all $1 \le k \le n$. Determine all the good numbers in the set $\{11, 13, 15, 17, 19\}$.
2	Let a, b, c be positive reals. Find the smallest value of
	$\frac{a+3c}{a+2b+c} + \frac{4b}{a+b+2c} - \frac{8c}{a+b+3c}.$
3	Let <i>ABC</i> be an obtuse inscribed in a circle of radius 1. Prove that $\triangle ABC$ can be covered by an isosceles right-angled triangle with hypotenuse of length $\sqrt{2} + 1$.
4	A deck of 32 cards has 2 different jokers each of which is numbered 0. There are 10 red cards numbered 1 through 10 and similarly for blue and green cards. One chooses a number of cards from the deck. If a card in hand is numbered k , then the value of the card is 2^k , and the value of the hand is sum of the values of the cards in hand. Determine the number of hands having the value 2004 .
Day 2	
5	Let u, v, w be positive real numbers such that $u\sqrt{vw} + v\sqrt{wu} + w\sqrt{uv} \ge 1$. Find the smallest value of $u + v + w$.
6	Given an acute triangle ABC with O as its circumcenter. Line AO intersects BC at D . Points E, F are on AB, AC respectively such that A, E, D, F are concyclic. Prove that the length of the projection of line segment EF on side BC does not depend on the positions of E and F .
7	Let p and q be two coprime positive integers, and n be a non-negative integer. Determine the number of integers that can be written in the form $ip + jq$, where i and j are non-negative integers with $i + j \le n$.
8	When the unit squares at the four corners are removed from a three by three squares, the resulting shape is called a cross. What is the maximum number of non-overlapping crosses placed within the boundary of a 10×11 chessboard? (Each cross covers exactly five unit squares on the board.)