Art of Problem Solving

AoPS Community

China Girls Math Olympiad 2004
www.artofproblemsolving.com/community/c3669
by April

Day 1

1 We say a positive integer n is good if there exists a permutation $a_{1}, a_{2}, \ldots, a_{n}$ of $1,2, \ldots, n$ such that $k+a_{k}$ is perfect square for all $1 \leq k \leq n$. Determine all the good numbers in the set $\{11,13,15,17,19\}$.

2 Let a, b, c be positive reals. Find the smallest value of

$$
\frac{a+3 c}{a+2 b+c}+\frac{4 b}{a+b+2 c}-\frac{8 c}{a+b+3 c} .
$$

3 Let $A B C$ be an obtuse inscribed in a circle of radius 1 . Prove that $\triangle A B C$ can be covered by an isosceles right-angled triangle with hypotenuse of length $\sqrt{2}+1$.

4 A deck of 32 cards has 2 different jokers each of which is numbered 0 . There are 10 red cards numbered 1 through 10 and similarly for blue and green cards. One chooses a number of cards from the deck. If a card in hand is numbered k, then the value of the card is 2^{k}, and the value of the hand is sum of the values of the cards in hand. Determine the number of hands having the value 2004 .

Day 2

5 Let u, v, w be positive real numbers such that $u \sqrt{v w}+v \sqrt{w u}+w \sqrt{u v} \geq 1$. Find the smallest value of $u+v+w$.
$6 \quad$ Given an acute triangle $A B C$ with O as its circumcenter. Line $A O$ intersects $B C$ at D. Points E, F are on $A B, A C$ respectively such that A, E, D, F are concyclic. Prove that the length of the projection of line segment $E F$ on side $B C$ does not depend on the positions of E and F.

7 Let p and q be two coprime positive integers, and n be a non-negative integer. Determine the number of integers that can be written in the form $i p+j q$, where i and j are non-negative integers with $i+j \leq n$.

8 When the unit squares at the four corners are removed from a three by three squares, the resulting shape is called a cross. What is the maximum number of non-overlapping crosses placed within the boundary of a 10×11 chessboard? (Each cross covers exactly five unit squares on the board.)

