AoPS Community

China Girls Math Olympiad 2005
www.artofproblemsolving.com/community/c3670
by orl

Day 1

1 As shown in the following figure, point P lies on the circumcicle of triangle $A B C$. Lines $A B$ and $C P$ meet at E, and lines $A C$ and $B P$ meet at F. The perpendicular bisector of line segment $A B$ meets line segment $A C$ at K, and the perpendicular bisector of line segment $A C$ meets line segment $A B$ at J. Prove that

$$
\left(\frac{C E}{B F}\right)^{2}=\frac{A J \cdot J E}{A K \cdot K F} .
$$

2 Find all ordered triples (x, y, z) of real numbers such that

$$
5\left(x+\frac{1}{x}\right)=12\left(y+\frac{1}{y}\right)=13\left(z+\frac{1}{z}\right),
$$

and

$$
x y+y z+z y=1 .
$$

3 Determine if there exists a convex polyhedron such that
(1) it has 12 edges, 6 faces and 8 vertices;
(2) it has 4 faces with each pair of them sharing a common edge of the polyhedron.

4 Determine all positive real numbers a such that there exists a positive integer n and sets $A_{1}, A_{2}, \ldots, A_{n}$ satisfying the following conditions:
(1) every set A_{i} has infinitely many elements;
(2) every pair of distinct sets A_{i} and A_{j} do not share any common element
(3) the union of sets $A_{1}, A_{2}, \ldots, A_{n}$ is the set of all integers;
(4) for every set A_{i}, the positive difference of any pair of elements in A_{i} is at least a^{i}.

Day 2

$5 \quad$ Let x and y be positive real numbers with $x^{3}+y^{3}=x-y$. Prove that

$$
x^{2}+4 y^{2}<1 .
$$

6 An integer n is called good if there are $n \geq 3$ lattice points $P_{1}, P_{2}, \ldots, P_{n}$ in the coordinate plane satisfying the following conditions: If line segment $P_{i} P_{j}$ has a rational length, then there is P_{k} such that both line segments $P_{i} P_{k}$ and $P_{j} P_{k}$ have irrational lengths; and if line segment $P_{i} P_{j}$ has an irrational length, then there is P_{k} such that both line segments $P_{i} P_{k}$ and $P_{j} P_{k}$ have rational lengths.
(1) Determine the minimum good number.
(2) Determine if 2005 is a good number. (A point in the coordinate plane is a lattice point if both of its coordinate are integers.)
$7 \quad$ Let m and n be positive integers with $m>n \geq 2$. Set $S=\{1,2, \ldots, m\}$, and $T=\left\{a_{l}, a_{2}, \ldots, a_{n}\right\}$ is a subset of S such that every number in S is not divisible by any two distinct numbers in T. Prove that

$$
\sum_{i=1}^{n} \frac{1}{a_{i}}<\frac{m+n}{m}
$$

8 Given an $a \times b$ rectangle with $a>b>0$, determine the minimum side of a square that covers the rectangle. (A square covers the rectangle if each point in the rectangle lies inside the square.)

