

AoPS Community

2005 China Girls Math Olympiad

China Girls Math Olympiad 2005

www.artofproblemsolving.com/community/c3670 by orl

Day 1

1 As shown in the following figure, point *P* lies on the circumcicle of triangle *ABC*. Lines *AB* and *CP* meet at *E*, and lines *AC* and *BP* meet at *F*. The perpendicular bisector of line segment *AB* meets line segment *AC* at *K*, and the perpendicular bisector of line segment *AC* meets line segment *AB* at *J*. Prove that

$$\left(\frac{CE}{BF}\right)^2 = \frac{AJ \cdot JE}{AK \cdot KF}.$$

2 Find all ordered triples (x, y, z) of real numbers such that

$$5\left(x+\frac{1}{x}\right) = 12\left(y+\frac{1}{y}\right) = 13\left(z+\frac{1}{z}\right),$$

and

$$xy + yz + zy = 1$$

3 Determine if there exists a convex polyhedron such that

(1) it has 12 edges, 6 faces and 8 vertices;

(2) it has 4 faces with each pair of them sharing a common edge of the polyhedron.

4 Determine all positive real numbers a such that there exists a positive integer n and sets A_1, A_2, \ldots, A_n satisfying the following conditions:

(1) every set A_i has infinitely many elements;

- (2) every pair of distinct sets A_i and A_j do not share any common element
- (3) the union of sets A_1, A_2, \ldots, A_n is the set of all integers;
- (4) for every set A_i , the positive difference of any pair of elements in A_i is at least a^i .

Day 2

AoPS Community

5

2005 China Girls Math Olympiad

Let
$$x$$
 and y be positive real numbers with $x^3 + y^3 = x - y$. Prove that $x^2 + 4y^2 < 1$.

6 An integer *n* is called good if there are $n \ge 3$ lattice points P_1, P_2, \ldots, P_n in the coordinate plane satisfying the following conditions: If line segment P_iP_j has a rational length, then there is P_k such that both line segments P_iP_k and P_jP_k have irrational lengths; and if line segment P_iP_j has an irrational length, then there is P_k such that both line segments P_iP_k have irrational lengths; and P_jP_k have rational lengths.

(1) Determine the minimum good number.

(2) Determine if 2005 is a good number. (A point in the coordinate plane is a lattice point if both of its coordinate are integers.)

7 Let m and n be positive integers with $m > n \ge 2$. Set $S = \{1, 2, ..., m\}$, and $T = \{a_l, a_2, ..., a_n\}$ is a subset of S such that every number in S is not divisible by any two distinct numbers in T. Prove that

$$\sum_{i=1}^n \frac{1}{a_i} < \frac{m+n}{m}.$$

8 Given an $a \times b$ rectangle with a > b > 0, determine the minimum side of a square that covers the rectangle. (A square covers the rectangle if each point in the rectangle lies inside the square.)

Act of Problem Solving is an ACS WASC Accredited School.