

AoPS Community

2006 China Girls Math Olympiad

China Girls Math Olympiad 2006

www.artofproblemsolving.com/community/c3671 by shobber

Day 1

1 Let a > 0, the function $f : (0, +\infty) \to R$ satisfies f(a) = 1, if for any positive reals x and y, there is

$$f(x)f(y) + f\left(\frac{a}{x}\right)f\left(\frac{a}{y}\right) = 2f(xy)$$

then prove that f(x) is a constant.

2 Let *O* be the intersection of the diagonals of convex quadrilateral *ABCD*. The circumcircles of $\triangle OAD$ and $\triangle OBC$ meet at *O* and *M*. Line *OM* meets the circumcircles of $\triangle OAB$ and $\triangle OCD$ at *T* and *S* respectively.

Prove that M is the midpoint of ST.

- **3** Show that for any i = 1, 2, 3, there exist infinity many positive integer n, such that among n, n + 2 and n + 28, there are exactly i terms that can be expressed as the sum of the cubes of three positive integers.
- **4** 8 people participate in a party.

(1) Among any 5 people there are 3 who pairwise know each other. Prove that there are 4 people who paiwise know each other.

(2) If Among any 6 people there are 3 who pairwise know each other, then can we find 4 people who pairwise know each other?

Day 2	
5	The set $S = \{(a,b) \mid 1 \le a, b \le 5, a, b \in \mathbb{Z}\}$ be a set of points in the plane with integeral coordinates. <i>T</i> is another set of points with integeral coordinates in the plane. If for any point $P \in S$, there is always another point $Q \in T$, $P \neq Q$, such that there is no other integeral points on segment <i>PQ</i> . Find the least value of the number of elements of <i>T</i> .
6	Let $M = \{1, 2, \dots, 19\}$ and $A = \{a_1, a_2, \dots, a_k\} \subseteq M$. Find the least k so that for any $b \in M$, there exist $a_i, a_j \in A$, satisfying $b = a_i$ or $b = a_i \pm a_i$ (a_i and a_j do not have to be different).

AoPS Community

2006 China Girls Math Olympiad

7 Given that $x_i > 0$, $i = 1, 2, \dots, n$, $k \ge 1$. Show that:

$$\sum_{i=1}^{n} \frac{1}{1+x_i} \cdot \sum_{i=1}^{n} x_i \leq \sum_{i=1}^{n} \frac{x_i^{k+1}}{1+x_i} \cdot \sum_{i=1}^{n} \frac{1}{x_i^k}$$

8 Let p be a prime number that is greater than 3. Show that there exist some integers $a_1, a_2, \dots a_k$ that satisfy:

$$-\frac{p}{2} < a_1 < a_2 < \dots < a_k < \frac{p}{2}$$

making the product:

$$\frac{p-a_1}{|a_1|} \cdot \frac{p-a_2}{|a_2|} \cdots \frac{p-a_k}{|a_k|}$$

equals to 3^m where m is a positive integer.

Act of Problem Solving is an ACS WASC Accredited School.