AoPS Community

China Girls Math Olympiad 2006
www.artofproblemsolving.com/community/c3671
by shobber

Day 1

1 Let $a>0$, the function $f:(0,+\infty) \rightarrow R$ satisfies $f(a)=1$, if for any positive reals x and y, there is

$$
f(x) f(y)+f\left(\frac{a}{x}\right) f\left(\frac{a}{y}\right)=2 f(x y)
$$

then prove that $f(x)$ is a constant.
2 Let O be the intersection of the diagonals of convex quadrilateral $A B C D$. The circumcircles of $\triangle O A D$ and $\triangle O B C$ meet at O and M. Line $O M$ meets the circumcircles of $\triangle O A B$ and $\triangle O C D$ at T and S respectively.

Prove that M is the midpoint of $S T$.
3 Show that for any $i=1,2,3$, there exist infinity many positive integer n, such that among n, $n+2$ and $n+28$, there are exactly i terms that can be expressed as the sum of the cubes of three positive integers.

48 people participate in a party.
(1) Among any 5 people there are 3 who pairwise know each other. Prove that there are 4 people who paiwise know each other.
(2) If Among any 6 people there are 3 who pairwise know each other, then can we find 4 people who pairwise know each other?

Day 2

5 The set $S=\{(a, b) \mid 1 \leq a, b \leq 5, a, b \in \mathbb{Z}\}$ be a set of points in the plane with integeral coordinates. T is another set of points with integeral coordinates in the plane. If for any point $P \in S$, there is always another point $Q \in T, P \neq Q$, such that there is no other integeral points on segment $P Q$. Find the least value of the number of elements of T.

6 Let $M=\{1,2, \cdots, 19\}$ and $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\} \subseteq M$. Find the least k so that for any $b \in M$, there exist $a_{i}, a_{j} \in A$, satisfying $b=a_{i}$ or $b=a_{i} \pm a_{i}$ (a_{i} and a_{j} do not have to be different).

7 Given that $x_{i}>0, i=1,2, \cdots, n, k \geq 1$. Show that:

$$
\sum_{i=1}^{n} \frac{1}{1+x_{i}} \cdot \sum_{i=1}^{n} x_{i} \leq \sum_{i=1}^{n} \frac{x_{i}^{k+1}}{1+x_{i}} \cdot \sum_{i=1}^{n} \frac{1}{x_{i}^{k}}
$$

8 Let p be a prime number that is greater than 3 . Show that there exist some integers $a_{1}, a_{2}, \cdots a_{k}$ that satisfy:

$$
-\frac{p}{2}<a_{1}<a_{2}<\cdots<a_{k}<\frac{p}{2}
$$

making the product:

$$
\frac{p-a_{1}}{\left|a_{1}\right|} \cdot \frac{p-a_{2}}{\left|a_{2}\right|} \cdots \frac{p-a_{k}}{\left|a_{k}\right|}
$$

equals to 3^{m} where m is a positive integer.

