Art of Problem Solving

AoPS Community

China Girls Math Olympiad 2007
www.artofproblemsolving.com/community/c3672
by April, easternlatincup

Day 1

1 A positive integer m is called good if there is a positive integer n such that m is the quotient of n by the number of positive integer divisors of n (including 1 and n itself). Prove that $1,2, \ldots, 17$ are good numbers and that 18 is not a good number.

2 Let $A B C$ be an acute triangle. Points D, E, and F lie on segments $B C, C A$, and $A B$, respectively, and each of the three segments $A D, B E$, and $C F$ contains the circumcenter of $A B C$. Prove that if any two of the ratios $\frac{B D}{D C}, \frac{C E}{E A}, \frac{A F}{F B}, \frac{B F}{F A}, \frac{A E}{E C}, \frac{C D}{D B}$ are integers, then triangle $A B C$ is isosceles.

3 Let n be an integer greater than 3 , and let $a_{1}, a_{2}, \cdots, a_{n}$ be non-negative real numbers with $a_{1}+a_{2}+\cdots+a_{n}=2$. Determine the minimum value of

$$
\frac{a_{1}}{a_{2}^{2}+1}+\frac{a_{2}}{a_{3}^{2}+1}+\cdots+\frac{a_{n}}{a_{1}^{2}+1} .
$$

4 The set S consists of $n>2$ points in the plane. The set P consists of m lines in the plane such that every line in P is an axis of symmetry for S. Prove that $m \leq n$, and determine when equality holds.

Day 2

5 Point D lies inside triangle $A B C$ such that $\angle D A C=\angle D C A=30^{\circ}$ and $\angle D B A=60^{\circ}$. Point E is the midpoint of segment $B C$. Point F lies on segment $A C$ with $A F=2 F C$. Prove that $D E \perp E F$.

6 For $a, b, c \geq 0$ with $a+b+c=1$, prove that
$\sqrt{a+\frac{(b-c)^{2}}{4}}+\sqrt{b}+\sqrt{c} \leq \sqrt{3}$
7 Let a, b, c be integers each with absolute value less than or equal to 10 . The cubic polynomial $f(x)=x^{3}+a x^{2}+b x+c$ satisfies the property

$$
|f(2+\sqrt{3})|<0.0001
$$

Determine if $2+\sqrt{3}$ is a root of f.

8 In a round robin chess tournament each player plays every other player exactly once. The winner of each game gets 1 point and the loser gets 0 points. If the game is tied, each player gets 0.5 points. Given a positive integer m, a tournament is said to have property $P(m)$ if the following holds: among every set S of m players, there is one player who won all her games against the other $m-1$ players in S and one player who lost all her games against the other $m-1$ players in S. For a given integer $m \geq 4$, determine the minimum value of n (as a function of m) such that the following holds: in every n-player round robin chess tournament with property $P(m)$, the final scores of the n players are all distinct.

