

AoPS Community

2011 China Girls Math Olympiad

China Girls Math Olympiad 2011

www.artofproblemsolving.com/community/c3676 by yunxiu, red3

Day 1	
1	Find all positive integers n such that the equation $\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$ has exactly 2011 positive integer solutions (x, y) where $x \le y$.
2	The diagonals AC, BD of the quadrilateral $ABCD$ intersect at E . Let M, N be the midpoints of AB, CD respectively. Let the perpendicular bisectors of the segments AB, CD meet at F . Suppose that EF meets BC, AD at P, Q respectively. If $MF \cdot CD = NF \cdot AB$ and $DQ \cdot BP = AQ \cdot CP$, prove that $PQ \perp BC$.
3	The positive reals a, b, c, d satisfy $abcd = 1$. Prove that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{9}{a+b+c+d} \ge \frac{25}{4}$.
4	A tennis tournament has $n > 2$ players and any two players play one game against each other (ties are not allowed). After the game these players can be arranged in a circle, such that for any three players A, B, C , if A, B are adjacent on the circle, then at least one of A, B won against C . Find all possible values for n .
Day 2	
5	A real number $\alpha \ge 0$ is given. Find the smallest $\lambda = \lambda(\alpha) > 0$, such that for any complex numbers z_1, z_2 and $0 \le x \le 1$, if $ z_1 \le \alpha z_1 - z_2 $, then $ z_1 - xz_2 \le \lambda z_1 - z_2 $.
6	Do there exist positive integers m, n , such that $m^{20} + 11^n$ is a square number?
7	There are <i>n</i> boxes B_1, B_2, \ldots, B_n from left to right, and there are <i>n</i> balls in these boxes. If there is at least 1 ball in B_1 , we can move one to B_2 . If there is at least 1 ball in B_n , we can move one to B_{2-1} . If there are at least 2 balls in B_k , $2 \le k \le n-1$ we can move one to B_{k-1} , and one to B_{k+1} . Prove that, for any arrangement of the <i>n</i> balls, we can achieve that each box has one ball in it.
8	The <i>A</i> -excircle (<i>O</i>) of $\triangle ABC$ touches <i>BC</i> at <i>M</i> . The points <i>D</i> , <i>E</i> lie on the sides <i>AB</i> , <i>AC</i> respectively such that $DE \parallel BC$. The incircle (<i>O</i> ₁) of $\triangle ADE$ touches <i>DE</i> at <i>N</i> . If $BO_1 \cap DO = F$ and $CO_1 \cap EO = G$, prove that the midpoint of <i>FG</i> lies on <i>MN</i> .

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.