Art of Problem Solving

AoPS Community

China Girls Math Olympiad 2011
www.artofproblemsolving.com/community/c3676
by yunxiu, red3

Day 1

1 Find all positive integers n such that the equation $\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$ has exactly 2011 positive integer solutions (x, y) where $x \leq y$.

2 The diagonals $A C, B D$ of the quadrilateral $A B C D$ intersect at E. Let M, N be the midpoints of $A B, C D$ respectively. Let the perpendicular bisectors of the segments $A B, C D$ meet at F. Suppose that $E F$ meets $B C, A D$ at P, Q respectively. If $M F \cdot C D=N F \cdot A B$ and $D Q \cdot B P=$ $A Q \cdot C P$, prove that $P Q \perp B C$.

3 The positive reals a, b, c, d satisfy $a b c d=1$. Prove that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{9}{a+b+c+d} \geqslant \frac{25}{4}$.
4 A tennis tournament has $n>2$ players and any two players play one game against each other (ties are not allowed). After the game these players can be arranged in a circle, such that for any three players A, B, C, if A, B are adjacent on the circle, then at least one of A, B won against C. Find all possible values for n.

Day 2

5 A real number $\alpha \geq 0$ is given. Find the smallest $\lambda=\lambda(\alpha)>0$, such that for any complex numbers z_{1}, z_{2} and $0 \leq x \leq 1$, if $\left|z_{1}\right| \leq \alpha\left|z_{1}-z_{2}\right|$, then $\left|z_{1}-x z_{2}\right| \leq \lambda\left|z_{1}-z_{2}\right|$.

6 Do there exist positive integers m, n, such that $m^{20}+11^{n}$ is a square number?
7 There are n boxes $B_{1}, B_{2}, \ldots, B_{n}$ from left to right, and there are n balls in these boxes. If there is at least 1 ball in B_{1}, we can move one to B_{2}. If there is at least 1 ball in B_{n}, we can move one to B_{n-1}. If there are at least 2 balls in $B_{k}, 2 \leq k \leq n-1$ we can move one to B_{k-1}, and one to B_{k+1}. Prove that, for any arrangement of the n balls, we can achieve that each box has one ball in it.

8 The A-excircle (O) of $\triangle A B C$ touches $B C$ at M. The points D, E lie on the sides $A B, A C$ respectively such that $D E \| B C$. The incircle $\left(O_{1}\right)$ of $\triangle A D E$ touches $D E$ at N. If $B O_{1} \cap D O=F$ and $C O_{1} \cap E O=G$, prove that the midpoint of $F G$ lies on $M N$.

