AoPS Community

China Girls Math Olympiad 2014
www.artofproblemsolving.com/community/c3679
by SCP, sqing

Day 1

1 In the figure of http://www.artofproblemsolving.com/Forum/download/file.php?id=50643\} \&mode=view
$\odot O_{1}$ and $\odot O_{2}$ intersect at two points A, B.
The extension of $O_{1} A$ meets $\odot O_{2}$ at C, and the extension of $O_{2} A$ meets $\odot O_{1}$ at D, and through B draw $B E \| O_{2} A$ intersecting $\odot O_{1}$ again at E.
If $D E \| O_{1} A$, prove that $D C \perp C O_{2}$.
2 Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers, where $n \geq 2$ is a given integer, and let $\left\lfloor x_{1}\right\rfloor,\left\lfloor x_{2}\right\rfloor, \ldots,\left\lfloor x_{n}\right\rfloor$ be a permutation of $1,2, \ldots, n$.
Find the maximum and minimum of $\sum_{i=1}^{n-1}\left\lfloor x_{i+1}-x_{i}\right\rfloor$ (here $\lfloor x\rfloor$ is the largest integer not greater than x).

3 There are n students; each student knows exactly d girl students and d boy students ("knowing" is a symmetric relation). Find all pairs (n, d) of integers .

4 For an integer $m \geq 4$, let T_{m} denote the number of sequences a_{1}, \ldots, a_{m} such that the following conditions hold:
(1) For all $i=1,2, \ldots, m$ we have $a_{i} \in\{1,2,3,4\}$
(2) $a_{1}=a_{m}=1$ and $a_{2} \neq 1$
(3) For all $i=3,4 \cdots, m, a_{i} \neq a_{i-1}, a_{i} \neq a_{i-2}$.

Prove that there exists a geometric sequence of positive integers $\left\{g_{n}\right\}$ such that for $n \geq 4$ we have that

$$
g_{n}-2 \sqrt{g_{n}}<T_{n}<g_{n}+2 \sqrt{g_{n}} .
$$

Day 2

$5 \quad$ Let a be a positive integer, but not a perfect square; r is a real root of the equation $x^{3}-2 a x+1=$ 0 . Prove that $r+\sqrt{a}$ is an irrational number.

6 In acute triangle $A B C, A B>A C . D$ and E are the midpoints of $A B, A C$ respectively. The circumcircle of $A D E$ intersects the circumcircle of $B C E$ again at P.

The circumcircle of $A D E$ intersects the circumcircle $B C D$ again at Q.
Prove that $A P=A Q$.
$7 \quad$ Given a finite nonempty set X with real values, let $f(X)=\frac{1}{|X|} \sum_{a \in X} a$, where $|X|$ denotes the cardinality of X. For ordered pairs of sets (A, B) such that $A \cup B=\{1,2, \ldots, 100\}$ and $A \cap B=\emptyset$ where $1 \leq|A| \leq 98$, select some $p \in B$, and let $A_{p}=A \cup\{p\}$ and $B_{p}=B-\{p\}$. Over all such (A, B) and $p \in B$ determine the maximum possible value of $\left(f\left(A_{p}\right)-f(A)\right)\left(f\left(B_{p}\right)-f(B)\right)$.
$8 \quad$ Let n be a positive integer, and set S be the set of all integers in $\{1,2, \ldots, n\}$ which are relatively prime to n.
Set $S_{1}=S \cap\left(0, \frac{n}{3}\right], S_{2}=S \cap\left(\frac{n}{3}, \frac{2 n}{3}\right], S_{3}=S \cap\left(\frac{2 n}{3}, n\right]$.
If the cardinality of S is a multiple of 3 , prove that S_{1}, S_{2}, S_{3} have the same cardinality.

