

2009 Sharygin Geometry Olympiad

Sharygin Geometry Olympiad 2009

www.artofproblemsolving.com/community/c3681 by Snakes, April, parmenides51

-	First (Correspondence) Round
1	Points B_1 and B_2 lie on ray AM , and points C_1 and C_2 lie on ray AK . The circle with center O is inscribed into triangles AB_1C_1 and AB_2C_2 . Prove that the angles B_1OB_2 and C_1OC_2 are equal.
2	Given nonisosceles triangle ABC . Consider three segments passing through different vertices of this triangle and bisecting its perimeter. Are the lengths of these segments certainly different?
3	The bisectors of trapezoid's angles form a quadrilateral with perpendicular diagonals. Prove that this trapezoid is isosceles.
4	Let P and Q be the common points of two circles. The ray with origin Q reflects from the first circle in points A_1, A_2, \ldots according to the rule "the angle of incidence is equal to the angle of reflection". Another ray with origin Q reflects from the second circle in the points B_1, B_2, \ldots in the same manner. Points A_1, B_1 and P occurred to be collinear. Prove that all lines A_iB_i pass through P.
5	Given triangle ABC . Point O is the center of the excircle touching the side BC . Point O_1 is the reflection of O in BC . Determine angle A if O_1 lies on the circumcircle of ABC .
6	Find the locus of excenters of right triangles with given hypotenuse.
7	Given triangle ABC . Points M , N are the projections of B and C to the bisectors of angles C and B respectively. Prove that line MN intersects sides AC and AB in their points of contact with the incircle of ABC .
8	Some polygon can be divided into two equal parts by three different ways. Is it certainly valid that this polygon has an axis or a center of symmetry?
9	Given <i>n</i> points on the plane, which are the vertices of a convex polygon, $n > 3$. There exists <i>k</i> regular triangles with the side equal to 1 and the vertices at the given points. - Prove that $k < \frac{2}{3}n$ Construct the configuration with $k > 0.666n$.
10	Let ABC be an acute triangle, CC_1 its bisector, O its circumcenter. The perpendicular from C to AB meets line OC_1 in a point lying on the circumcircle of AOB . Determine angle C .

2009 Sharygin Geometry Olympiad

11 Given guadrilateral ABCD. The circumcircle of ABC is tangent to side CD, and the circumcircle of ACD is tangent to side AB. Prove that the length of diagonal AC is less than the distance between the midpoints of AB and CD. 12 Let CL be a bisector of triangle ABC. Points A_1 and B_1 are the reflections of A and B in CL, points A_2 and B_2 are the reflections of A and B in L. Let O_1 and O_2 be the circumcenters of triangles AB_1B_2 and BA_1A_2 respectively. Prove that angles O_1CA and O_2CB are equal. In triangle ABC, one has marked the incenter, the foot of altitude from vertex C and the center 13 of the excircle tangent to side AB. After this, the triangle was erased. Restore it. 14 Given triangle ABC of area 1. Let BM be the perpendicular from B to the bisector of angle C. Determine the area of triangle AMC. 15 Given a circle and a point C not lying on this circle. Consider all triangles ABC such that points A and B lie on the given circle. Prove that the triangle of maximal area is isosceles. Three lines passing through point O form equal angles by pairs. Points A_1 , A_2 on the first line 16 and B_1 , B_2 on the second line are such that the common point C_1 of A_1B_1 and A_2B_2 lies on the third line. Let C_2 be the common point of A_1B_2 and A_2B_1 . Prove that angle C_1OC_2 is right. 17 Given triangle ABC and two points X, Y not lying on its circumcircle. Let A_1 , B_1 , C_1 be the projections of X to BC, CA, AB, and A₂, B₂, C₂ be the projections of Y. Prove that the perpendiculars from A_1 , B_1 , C_1 to B_2C_2 , C_2A_2 , A_2B_2 , respectively, concur if and only if line XY passes through the circumcenter of ABC. 18 Given three parallel lines on the plane. Find the locus of incenters of triangles with vertices lying on these lines (a single vertex on each line). Given convex *n*-gon $A_1 \dots A_n$. Let P_i $(i = 1, \dots, n)$ be such points on its boundary that $A_i P_i$ 19 bisects the area of polygon. All points P_i don't coincide with any vertex and lie on k sides of *n*-gon. What is the maximal and the minimal value of k for each given n? 20 Suppose H and O are the orthocenter and the circumcenter of acute triangle ABC; AA_1, BB_1 and CC_1 are the altitudes of the triangle. Point C_2 is the reflection of C in A_1B_1 . Prove that H, O, C_1 and C_2 are concyclic. The opposite sidelines of quadrilateral ABCD intersect at points P and Q. Two lines passing 21 through these points meet the side of ABCD in four points which are the vertices of a parallelogram. Prove that the center of this parallelogram lies on the line passing through the midpoints of diagonals of *ABCD*.

2009 Sharygin Geometry Olympiad

22 Construct a guadrilateral which is inscribed and circumscribed, given the radii of the respective circles and the angle between the diagonals of quadrilateral. Is it true that for each n, the regular 2n-gon is a projection of some polyhedron having not greater 23 than n+2 faces? 24 A sphere is inscribed into a quadrangular pyramid. The point of contact of the sphere with the base of the pyramid is projected to the edges of the base. Prove that these projections are concyclic. **Final Round** Grade 8 _ 1 Minor base BC of trapezoid ABCD is equal to side AB, and diagonal AC is equal to base AD. The line passing through B and parallel to AC intersects line DC in point M. Prove that AM is the bisector of angle $\angle BAC$. A.Blinkov, Y.Blinkov 2 A cyclic quadrilateral is divided into four quadrilaterals by two lines passing through its inner point. Three of these quadrilaterals are cyclic with equal circumradii. Prove that the fourth part also is cyclic guadrilateral and its circumradius is the same. (A.Blinkov) 3 Let AH_a and BH_b be the altitudes of triangle ABC. Points P and Q are the projections of H_a to AB and AC. Prove that line PQ bisects segment H_aH_b . (A.Akopjan, K.Savenkov) Given is $\triangle ABC$ such that $\angle A = 57^{\circ}, \angle B = 61^{\circ}$ and $\angle C = 62^{\circ}$. Which segment is longer: the 4 angle bisector through A or the median through B? (N.Beluhov) 5 Given triangle ABC. Point M is the projection of vertex B to bisector of angle C. K is the touching point of the incircle with side *BC*. Find angle $\angle MKB$ if $\angle BAC = \alpha$ (V.Protasov) Can four equal polygons be placed on the plane in such a way that any two of them don't have 6 common interior points, but have a common boundary segment? (S.Markelov)

2009 Sharygin Geometry Olympiad

7 Let *s* be the circumcircle of triangle *ABC*, *L* and *W* be common points of angle's *A* bisector with side *BC* and *s* respectively, *O* be the circumcenter of triangle *ACL*. Restore triangle *ABC*, if circle *s* and points *W* and *O* are given.

(D.Prokopenko)

8 A triangle *ABC* is given, in which the segment *BC* touches the incircle and the corresponding excircle in points *M* and *N*. If $\angle BAC = 2\angle MAN$, show that BC = 2MN.

(N.Beluhov)

– Grade 9

1 The midpoint of triangle's side and the base of the altitude to this side are symmetric wrt the touching point of this side with the incircle. Prove that this side equals one third of triangle's perimeter.

(A.Blinkov, Y.Blinkov)

- **2** Given a convex quadrilateral ABCD. Let R_a , R_b , R_c and R_d be the circumradii of triangles DAB, ABC, BCDProve that inequality $R_a < R_b < R_c < R_d$ is equivalent to $180^o - \angle CDB < \angle CAB < \angle CDB$. (O.Musin)
- **3** Quadrilateral ABCD is circumscribed, rays BA and CD intersect in point E, rays BC and AD intersect in point F. The incircle of the triangle formed by lines AB, CD and the bisector of angle B, touches AB in point K, and the incircle of the triangle formed by lines AD, BC and the bisector of angle B, touches BC in point L. Prove that lines KL, AC and EF concur.

(I.Bogdanov)

4 Given regular 17-gon $A_1 \dots A_{17}$. Prove that two triangles formed by lines $A_1A_4, A_2A_{10}, A_{13}A_{14}$ and $A_2A_3, A_4A_6A_{14}A_{15}$ are equal.

(N.Beluhov)

5 Let *n* points lie on the circle. Exactly half of triangles formed by these points are acute-angled. Find all possible *n*.

(B.Frenkin)

6 Given triangle ABC such that $AB - BC = \frac{AC}{\sqrt{2}}$. Let M be the midpoint of AC, and N be the foot of the angle bisector from B. Prove that $\angle BMC + \angle BNC = 90^{\circ}$.

(A.Akopjan)

2009 Sharygin Geometry Olympiad

7 Given two intersecting circles with centers O_1, O_2 . Construct the circle touching one of them externally and the second one internally such that the distance from its center to O_1O_2 is maximal.

(M.Volchkevich)

8 Given cyclic quadrilateral *ABCD*. Four circles each touching its diagonals and the circumcircle internally are equal. Is *ABCD* a square?

(C.Pohoata, A.Zaslavsky)

– Grade 10

1 Let a, b, c be the lengths of some triangle's sides, p, r be the semiperimeter and the inradius of triangle. Prove an inequality $\sqrt{\frac{ab(p-c)}{p}} + \sqrt{\frac{ca(p-b)}{p}} + \sqrt{\frac{bc(p-a)}{p}} \ge 6r$

(D.Shvetsov)

2 Given quadrilateral ABCD. Its sidelines AB and CD intersect in point K. It's diagonals intersect in point L. It is known that line KL pass through the centroid of ABCD. Prove that ABCD is trapezoid.

(F.Nilov)

3 The cirumradius and the inradius of triangle ABC are equal to R and r, O, I are the centers of respective circles. External bisector of angle C intersect AB in point P. Point Q is the projection of P to line OI. Find distance OQ.

(A.Zaslavsky, A.Akopjan)

- 4 Three parallel lines d_a , d_b , d_c pass through the vertex of triangle *ABC*. The reflections of d_a , d_b , d_c in *BC*, *CA*, *AB* respectively form triangle *XYZ*. Find the locus of incenters of such triangles. (C.Pohoata)
- 5 Rhombus CKLN is inscribed into triangle ABC in such way that point L lies on side AB, point N lies on side AC, point K lies on side BC. O_1, O_2 and O are the circumcenters of triangles ACL, BCL and ABC respectively. Let P be the common point of circles ANL and BKL, distinct from L. Prove that points O_1, O_2, O and P are concyclic.

(D.Prokopenko)

6 Let M, I be the centroid and the incenter of triangle ABC, A_1 and B_1 be the touching points of the incircle with sides BC and AC, G be the common point of lines AA_1 and BB_1 . Prove that angle $\angle CGI$ is right if and only if GM//AB.

2009 Sharygin Geometry Olympiad

(A.Zaslavsky)

7	Given points $O, A_1, A_2,, A_n$ on the plane. For any two of these points the square of distance between them is natural number. Prove that there exist two vectors \vec{x} and \vec{y} , such that for any point A_i , $\vec{OA_i} = k\vec{x} + l\vec{y}$, where k and l are some integer numbers. (A.Glazyrin)
8	Can the regular octahedron be inscribed into regular dodecahedron in such way that all vertices of octahedron be the vertices of dodecahedron? (B.Frenkin)

AoPS Online 🕸 AoPS Academy 🕸 AoPS & Contemport