

AoPS Community

1965 Spain Mathematical Olympiad

Spain Mathematical Olympiad 1965

www.artofproblemsolving.com/community/c368250 by gavrilos, LordKitenge

-	Day 1

- **1** We consider an equilateral triangle with its circumscribed circle, of center *O*, and radius 4cm. We rotate the triangle 90 around *O*. Compute the common area that was covered by the previous position of the triangle and is also covered by the new one.
- **2** How many numbers of 3 digits have their central digit greater than any of the other two? How many of them have also three different digits?
- **3** A disk in a record turntable makes 100 revolutions per minute and it plays during 24 minutes and 30 seconds. The recorded line over the disk is a spiral with a diameter that decreases uniformly from 29cm to 11.5cm. Compute the length of the recorded line.
- 4 Find all the intervals *I* where any element of the interval $x \in I$ satisfies

 $\cos x + \sin x > 1.$

Do the same computation when x satisfies

 $\cos x + |\sin x| > 1.$

– Day 2	
---------	--

5 It is well-known that if $\frac{p}{q} = \frac{r}{s}$, both of the expressions are also equal to $\frac{p-r}{q-s}$. Now we write the equality

$$\frac{3x-b}{3x-5b} = \frac{3a-4b}{3a-8b}.$$

The previous property shows that both fractions should be equal to

$$\frac{3x-b-3a+4b}{3x-5b-3a+8b} = \frac{3x-3a+3b}{3x-3a+3b} = 1.$$

However, the initial fractions given may not be equal to 1. Explain what is going on.

6 We have an empty equilateral triangle with length of a side *l*. We put the triangle, horizontally, over a sphere of radius *r*. Clearly, if the triangle is small enough, the triangle is held by the sphere. Which is the distance between any vertex of the triangle and the centre of the sphere (as a function of *l* and *r*)?

AoPS Community

1965 Spain Mathematical Olympiad

- 7 A truncated cone has the bigger base of radius r centimetres and the generatrix makes an angle, with that base, whose tangent equals m. The truncated cone is constructed of a material of density d (g/cm³) and the smaller base is covered by a special material of density p (g/cm²). Which is the height of the truncated cone that maximizes the total mass?
- 8 Let be γ_1 a circumference of radius r and P an exterior point that is at distance a from the centre of γ_1 . We build two tangent lines r, s to γ_1 from P and γ_2 is constructed as a smaller circumference, tangent to both lines and, also, tangent to γ_1 . We construct inductively γ_{n+1} as a tangent circumference to γ_n and, also, tangent to r and s. Determine:
 - a) The radius of γ₂.
 b) The radius of γ_n.
 c) The sum of the lengths of γ₁, γ₂, γ₃,

Act of Problem Solving is an ACS WASC Accredited School.