Art of Problem Solving

AoPS Community

2011 Sharygin Geometry Olympiad

Sharygin Geometry Olympiad 2011

www.artofproblemsolving.com/community/c3683
by Snakes, hshiems, parmenides51, Wizard_32

- \quad First Round

1 Does a convex heptagon exist which can be divided into 2011 equal triangles?
2 Let $A B C$ be a triangle with sides $A B=4$ and $A C=6$. Point H is the projection of vertex B to the bisector of angle A. Find $M H$, where M is the midpoint of $B C$.

3 Let $A B C$ be a triangle with $\angle A=60^{\circ}$. The midperpendicular of segment $A B$ meets line $A C$ at point C_{1}. The midperpendicular of segment $A C$ meets line $A B$ at point B_{1}. Prove that line $B_{1} C_{1}$ touches the incircle of triangle $A B C$.

4 Segments $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ are the bisectrices of triangle $A B C$. It is known that these lines are also the bisectrices of triangle $A^{\prime} B^{\prime} C^{\prime}$. Is it true that triangle $A B C$ is regular?

5 Given triangle $A B C$. The midperpendicular of side $A B$ meets one of the remaining sides at point C^{\prime}. Points A^{\prime} and B^{\prime} are defined similarly. Find all triangles $A B C$ such that triangle $A^{\prime} B^{\prime} C^{\prime}$ is regular.

6 Two unit circles ω_{1} and ω_{2} intersect at points A and $B . M$ is an arbitrary point of ω_{1}, N is an arbitrary point of ω_{2}. Two unit circles ω_{3} and ω_{4} pass through both points M and N. Let C be the second common point of ω_{1} and ω_{3}, and D be the second common point of ω_{2} and ω_{4}. Prove that $A C B D$ is a parallelogram.

7 Points P and Q on sides $A B$ and $A C$ of triangle $A B C$ are such that $P B=Q C$. Prove that $P Q<B C$.

8 The incircle of right-angled triangle $A B C\left(\angle B=90^{\circ}\right)$ touches $A B, B C, C A$ at points C_{1}, A_{1}, B_{1} respectively. Points A_{2}, C_{2} are the reflections of B_{1} in lines $B C, A B$ respectively. Prove that lines $A_{1} A_{2}$ and $C_{1} C_{2}$ meet on the median of triangle $A B C$.

9 Let H be the orthocenter of triangle $A B C$. The tangents to the circumcircles of triangles $C H B$ and $A H B$ at point H meet $A C$ at points A_{1} and C_{1} respectively. Prove that $A_{1} H=C_{1} H$.

10 The diagonals of trapezoid $A B C D$ meet at point O. Point M of lateral side $C D$ and points P, Q of bases $B C$ and $A D$ are such that segments $M P$ and $M Q$ are parallel to the diagonals of the trapezoid. Prove that line $P Q$ passes through point O.

AoPS Community

2011 Sharygin Geometry Olympiad

11 The excircle of right-angled triangle $A B C\left(\angle B=90^{\circ}\right)$ touches side $B C$ at point A_{1} and touches line $A C$ in point A_{2}. Line $A_{1} A_{2}$ meets the incircle of $A B C$ for the first time at point A^{\prime}, point C^{\prime} is defined similarly. Prove that $A C \| A^{\prime} C^{\prime}$.

12 Let $A P$ and $B Q$ be the altitudes of acute-angled triangle $A B C$. Using a compass and a ruler, construct a point M on side $A B$ such that $\angle A Q M=\angle B P M$.

13 a) Find the locus of centroids for triangles whose vertices lie on the sides of a given triangle (each side contains a single vertex).
b) Find the locus of centroids for tetrahedrons whose vertices lie on the faces of a given tetrahedron (each face contains a single vertex).

14 In triangle $A B C$, the altitude and the median from vertex A form (together with line $B C$) a triangle such that the bisectrix of angle A is the median; the altitude and the median from vertex B form (together with line AC) a triangle such that the bisectrix of angle B is the bisectrix. Find the ratio of sides for triangle $A B C$.

15 Given a circle with center O and radius equal to $1 . A B$ and $A C$ are the tangents to this circle from point A. Point M on the circle is such that the areas of quadrilaterals $O B M C$ and $A B M C$ are equal. Find $M A$.

16 Given are triangle $A B C$ and line ℓ. The reflections of ℓ in $A B$ and $A C$ meet at point A_{1}. Points B_{1}, C_{1} are defined similarly. Prove that
a) lines $A A_{1}, B B_{1}, C C_{1}$ concur,
b) their common point lies on the circumcircle of $A B C$
c) two points constructed in this way for two perpendicular lines are opposite.

17 a) Does there exist a triangle in which the shortest median is longer that the longest bisectrix?
b) Does there exist a triangle in which the shortest bisectrix is longer that the longest altitude?

18 On the plane, given are n lines in general position, i.e. any two of them arent parallel and any three of them dont concur. These lines divide the plane into several parts. What is
a) the minimal,
b) the maximal number of these parts that can be angles?

19 Does there exist a nonisosceles triangle such that the altitude from one vertex, the bisectrix from the second one and the median from the third one are equal?

20 Quadrilateral $A B C D$ is circumscribed around a circle with center I. Points M and N are the midpoints of diagonals $A C$ and $B D$. Prove that $A B C D$ is cyclic quadrilateral if and only if $I M: A C=I N: B D$.

AoPS Community

Nikolai Beluhov and Aleksey Zaslavsky

21 On a circle with diameter $A C$, let B be an arbitrary point distinct from A and C. Points M, N are the midpoints of chords $A B, B C$, and points P, Q are the midpoints of smaller arcs restricted by these chords. Lines $A Q$ and $B C$ meet at point K, and lines $C P$ and $A B$ meet at point L. Prove that lines $M Q, N P$ and $K L$ concur.

22 Let $C X, C Y$ be the tangents from vertex C of triangle $A B C$ to the circle passing through the midpoints of its sides. Prove that lines $X Y, A B$ and the tangent to the circumcircle of $A B C$ at point C concur.

23 Given are triangle $A B C$ and line ℓ intersecting $B C, C A$ and $A B$ at points A_{1}, B_{1} and C_{1} respectively. Point A^{\prime} is the midpoint of the segment between the projections of A_{1} to $A B$ and $A C$. Points B^{\prime} and C^{\prime} are defined similarly.
(a) Prove that A^{\prime}, B^{\prime} and C^{\prime} lie on some line ℓ^{\prime}.
(b) Suppose ℓ passes through the circumcenter of $\triangle A B C$. Prove that in this case ℓ^{\prime} passes through the center of its nine-points circle.
M. Marinov and N. Beluhov

24 Given is an acute-angled triangle $A B C$. On sides $B C, C A, A B$, find points $A^{\prime}, B^{\prime}, C^{\prime}$ such that the longest side of triangle $A^{\prime} B^{\prime} C^{\prime}$ is minimal.

25 Three equal regular tetrahedrons have the common center. Is it possible that all faces of the polyhedron that forms their intersection are equal?

- \quad Final Round

- \quad Grade 8

1 The diagonals of a trapezoid are perpendicular, and its altitude is equal to the medial line. Prove that this trapezoid is isosceles

2 Peter made a paper rectangle, put it on an identical rectangle and pasted both rectangles along their perimeters. Then he cut the upper rectangle along one of its diagonals and along the perpendiculars to this diagonal from two remaining vertices. After this he turned back the obtained triangles in such a way that they, along with the lower rectangle form a new rectangle.
Let this new rectangle be given. Restore the original rectangle using compass and ruler.
3 The line passing through vertex A of triangle $A B C$ and parallel to $B C$ meets the circumcircle of $A B C$ for the second time at point A_{1}. Points B_{1} and C_{1} are defined similarly. Prove that the perpendiculars from A_{1}, B_{1}, C_{1} to $B C, C A, A B$ respectively concur.

AoPS Community

2011 Sharygin Geometry Olympiad

4 Given the circle of radius 1 and several its chords with the sum of lengths 1 . Prove that one can be inscribe a regular hexagon into that circle so that its sides dont intersect those chords.

5 A line passing through vertex A of regular triangle $A B C$ doesnt intersect segment $B C$. Points M and N lie on this line, and $A M=A N=A B$ (point B lies inside angle $M A C$). Prove that the quadrilateral formed by lines $A B, A C, B N, C M$ is cyclic.

6 Let $B B_{1}$ and $C C_{1}$ be the altitudes of acute-angled triangle $A B C$, and A_{0} is the midpoint of $B C$. Lines $A_{0} B_{1}$ and $A_{0} C_{1}$ meet the line passing through A and parallel to $B C$ in points P and Q. Prove that the incenter of triangle $P A_{0} Q$ lies on the altitude of triangle $A B C$.
$7 \quad$ Let a point M not lying on coordinates axes be given. Points Q and P move along Y - and X-axis respectively so that angle $P M Q$ is always right. Find the locus of points symmetric to M wrt $P Q$.

8 Using only the ruler, divide the side of a square table into n equal parts.
All lines drawn must lie on the surface of the table.

- \quad Grade 9

1 Altitudes $A A_{1}$ and $B B_{1}$ of triangle ABC meet in point H. Line $C H$ meets the semicircle with diameter $A B$, passing through A_{1}, B_{1}, in point D. Segments $A D$ and $B B_{1}$ meet in point M, segments $B D$ and $A A_{1}$ meet in point N. Prove that the circumcircles of triangles $B_{1} D M$ and $A_{1} D N$ touch.

2 In triangle $A B C, \angle B=2 \angle C$. Points P and Q on the medial perpendicular to $C B$ are such that $\angle C A P=\angle P A Q=\angle Q A B=\frac{\angle A}{3}$. Prove that Q is the circumcenter of triangle $C P B$.

3 Restore the isosceles triangle $A B C(A B=A C)$ if the common points I, M, H of bisectors, medians and altitudes respectively are given.

4 Quadrilateral $A B C D$ is inscribed into a circle with center O. The bisectors of its angles form a cyclic quadrilateral with circumcenter I, and its external bisectors form a cyclic quadrilateral with circumcenter J. Prove that O is the midpoint of $I J$.

5 It is possible to compose a triangle from the altitudes of a given triangle. Can we conclude that it is possible to compose a triangle from its bisectors?

6 In triangle $A B C A A_{0}$ and $B B_{0}$ are medians, $A A_{1}$ and $B B_{1}$ are altitudes. The circumcircles of triangles $C A_{0} B_{0}$ and $C A_{1} B_{1}$ meet again in point M_{c}. Points M_{a}, M_{b} are defined similarly. Prove that points M_{a}, M_{b}, M_{c} are collinear and lines $A M_{a}, B M_{b}, C M_{c}$ are parallel.

AoPS Community

2011 Sharygin Geometry Olympiad

$7 \quad$ Circles ω and Ω are inscribed into the same angle. Line ℓ meets the sides of angles, ω and Ω in points A and F, B and C, D and E respectively (the order of points on the line is A, B, C, D, E, F). It is known that $B C=D E$. Prove that $A B=E F$.

8 A convex n-gon P, where $n>3$, is dissected into equal triangles by diagonals non-intersecting inside it. Which values of n are possible, if P is circumscribed?

- \quad Grade 10

1 In triangle $A B C$ the midpoints of sides $A C, B C$, vertex C and the centroid lie on the same circle. Prove that this circle touches the circle passing through A, B and the orthocenter of triangle $A B C$.

2 Quadrilateral $A B C D$ is circumscribed. Its incircle touches sides $A B, B C, C D, D A$ in points K, L, M, N respectively. Points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are the midpoints of segments $L M, M N, N K, K L$. Prove that the quadrilateral formed by lines $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ is cyclic.

3 Given two tetrahedrons $A_{1} A_{2} A_{3} A_{4}$ and $B_{1} B_{2} B_{3} B_{4}$. Consider six pairs of edges $A_{i} A_{j}$ and $B_{k} B_{l}$, where (i, j, k, l) is a transposition of numbers ($1,2,3,4$) (for example $A_{1} A_{2}$ and $B_{3} B_{4}$). It is known that for all but one such pairs the edges are perpendicular. Prove that the edges in the remaining pair also are perpendicular.

4 Point D lies on the side $A B$ of triangle $A B C$. The circle inscribed in angle $A D C$ touches internally the circumcircle of triangle $A C D$. Another circle inscribed in angle $B D C$ touches internally the circumcircle of triangle $B C D$. These two circles touch segment $C D$ in the same point X. Prove that the perpendicular from X to $A B$ passes through the incenter of triangle ABC

5 The touching point of the excircle with the side of a triangle and the base of the altitude to this side are symmetric wrt the base of the corresponding bisector. Prove that this side is equal to one third of the perimeter.

6 Prove that for any nonisosceles triangle $l_{1}^{2}>\sqrt{3} S>l_{2}^{2}$, where l_{1}, l_{2} are the greatest and the smallest bisectors of the triangle and S is its area.

7 Point O is the circumcenter of acute-angled triangle $A B C$, points A_{1}, B_{1}, C_{1} are the bases of its altitudes. Points $A^{\prime}, B^{\prime}, C^{\prime}$ lying on lines $O A_{1}, O B_{1}, O C_{1}$ respectively are such that quadrilaterals $A O B C^{\prime}, B O C A^{\prime}, C O A B^{\prime}$ are cyclic. Prove that the circumcircles of triangles $A A_{1} A^{\prime}, B B_{1} B^{\prime}, C C_{1} C^{\prime}$ have a common point.

8 Given a sheet of tin 6×6. It is allowed to bend it and to cut it but in such a way that it doesnt fall to pieces. How to make a cube with edge 2 , divided by partitions into unit cubes?

