Sharygin Geometry Olympiad 2012

www.artofproblemsolving.com/community/c3684
by Snakes, nsun48, parmenides51, paul1703

- \quad First (Correspondence) Round

1 In triangle $A B C$ point M is the midpoint of side $A B$, and point D is the foot of altitude $C D$. Prove that $\angle A=2 \angle B$ if and only if $A C=2 M D$.

2 A cyclic n-gon is divided by non-intersecting (inside the n-gon) diagonals to $n-2$ triangles. Each of these triangles is similar to at least one of the remaining ones. For what n this is possible?

3 A circle with center I touches sides $A B, B C, C A$ of triangle $A B C$ in points C_{1}, A_{1}, B_{1}. Lines $A I, C I, B_{1} I$ meet $A_{1} C_{1}$ in points X, Y, Z respectively. Prove that $\angle Y B_{1} Z=\angle X B_{1} Z$.

4 Given triangle $A B C$. Point M is the midpoint of side $B C$, and point P is the projection of B to the perpendicular bisector of segment $A C$. Line $P M$ meets $A B$ in point Q. Prove that triangle $Q P B$ is isosceles.
$5 \quad$ On side $A C$ of triangle $A B C$ an arbitrary point is selected D. The tangent in D to the circumcircle of triangle $B D C$ meets $A B$ in point C_{1}; point A_{1} is defined similarly. Prove that $A_{1} C_{1} \| A C$.

6 Point C_{1} of hypothenuse $A C$ of a right-angled triangle $A B C$ is such that $B C=C C_{1}$. Point C_{2} on cathetus $A B$ is such that $A C_{2}=A C_{1}$; point A_{2} is defined similarly. Find angle $A M C$, where M is the midpoint of $A_{2} C_{2}$.
$7 \quad$ In a non-isosceles triangle $A B C$ the bisectors of angles A and B are inversely proportional to the respective sidelengths. Find angle C.

8 Let $B M$ be the median of right-angled triangle $A B C\left(\angle B=90^{\circ}\right)$. The incircle of triangle $A B M$ touches sides $A B, A M$ in points A_{1}, A_{2}; points C_{1}, C_{2} are defined similarly. Prove that lines $A_{1} A_{2}$ and $C_{1} C_{2}$ meet on the bisector of angle $A B C$.

9 In triangle $A B C$, given lines l_{b} and l_{c} containing the bisectors of angles B and C, and the foot L_{1} of the bisector of angle A. Restore triangle $A B C$.

10 In a convex quadrilateral all sidelengths and all angles are pairwise different.
a) Can the greatest angle be adjacent to the greatest side and at the same time the smallest angle be adjacent to the smallest side?
b) Can the greatest angle be non-adjacent to the smallest side and at the same time the smallest angle be non-adjacent to the greatest side?

11 Given triangle $A B C$ and point P. Points $A^{\prime}, B^{\prime}, C^{\prime}$ are the projections of P to $B C, C A, A B$. A line passing through P and parallel to $A B$ meets the circumcircle of triangle $P A^{\prime} B^{\prime}$ for the second time in point C_{1}. Points A_{1}, B_{1} are defined similarly. Prove that
a) lines $A A_{1}, B B_{1}, C C_{1}$ concur;
b) triangles $A B C$ and $A_{1} B_{1} C_{1}$ are similar.

12 Let O be the circumcenter of an acute-angled triangle $A B C$. A line passing through O and parallel to $B C$ meets $A B$ and $A C$ in points P and Q respectively. The sum of distances from O to $A B$ and $A C$ is equal to $O A$. Prove that $P B+Q C=P Q$.

13 Points A, B are given. Find the locus of points C such that C, the midpoints of $A C, B C$ and the centroid of triangle $A B C$ are concyclic.

14 In a convex quadrilateral $A B C D$ suppose $A C \cap B D=O$ and M is the midpoint of $B C$. Let $M O \cap A D=E$. Prove that $\frac{A E}{E D}=\frac{S_{\triangle A B O}}{S_{\triangle C D O}}$.

15 Given triangle $A B C$. Consider lines l with the next property: the reflections of l in the sidelines of the triangle concur. Prove that all these lines have a common point.

16 Given right-angled triangle $A B C$ with hypothenuse $A B$. Let M be the midpoint of $A B$ and O be the center of circumcircle ω of triangle $C M B$. Line $A C$ meets ω for the second time in point K. Segment $K O$ meets the circumcircle of triangle $A B C$ in point L. Prove that segments $A L$ and $K M$ meet on the circumcircle of triangle $A C M$.

17 A square $A B C D$ is inscribed into a circle. Point M lies on $\operatorname{arc} B C, A M$ meets $B D$ in point P, $D M$ meets $A C$ in point Q. Prove that the area of quadrilateral $A P Q D$ is equal to the half of the area of the square.

18 A triangle and two points inside it are marked. It is known that one of the triangle's angles is equal to 58°, one of two remaining angles is equal to 59°, one of two given points is the incenter of the triangle and the second one is its circumcenter. Using only the ruler without partitions determine where is each of the angles and where is each of the centers.

19 Two circles with radii 1 meet in points X, Y, and the distance between these points also is equal to 1 . Point C lies on the first circle, and lines $C A, C B$ are tangents to the second one. These tangents meet the first circle for the second time in points B^{\prime}, A^{\prime}. Lines $A A^{\prime}$ and $B B^{\prime}$ meet in point Z. Find angle $X Z Y$.

20 Point D lies on side $A B$ of triangle $A B C$. Let ω_{1} and Ω_{1}, ω_{2} and Ω_{2} be the incircles and the excircles (touching segment $A B$) of triangles $A C D$ and $B C D$. Prove that the common external tangents to ω_{1} and ω_{2}, Ω_{1} and Ω_{2} meet on $A B$.

21 Two perpendicular lines pass through the orthocenter of an acute-angled triangle. The sidelines of the triangle cut on each of these lines two segments: one lying inside the triangle and another one lying outside it. Prove that the product of two internal segments is equal to the product of two external segments.

Nikolai Beluhov and Emil Kolev

22 A circle ω with center I is inscribed into a segment of the disk, formed by an arc and a chord $A B$. Point M is the midpoint of this arc $A B$, and point N is the midpoint of the complementary arc. The tangents from N touch ω in points C and D. The opposite sidelines $A C$ and $B D$ of quadrilateral $A B C D$ meet in point X, and the diagonals of $A B C D$ meet in point Y. Prove that points X, Y, I and M are collinear.

23 An arbitrary point is selected on each of twelve diagonals of the faces of a cube.The centroid of these twelve points is determined. Find the locus of all these centroids.

24 Given are $n(n>2)$ points on the plane such that no three of them are collinear. In how many ways this set of points can be divided into two non-empty subsets with non-intersecting convex envelops?

- Final Round

- \quad grade 8

1 Let M be the midpoint of the base $A C$ of an acute-angled isosceles triangle $A B C$. Let N be the reflection of M in $B C$. The line parallel to $A C$ and passing through N meets $A B$ at point K. Determine the value of $\angle A K C$.
(A.Blinkov)

2 In a triangle $A B C$ the bisectors $B B^{\prime}$ and $C C^{\prime}$ are drawn. After that, the whole picture except the points A, B^{\prime}, and C^{\prime} is erased. Restore the triangle using a compass and a ruler.
(A.Karlyuchenko)

3 A paper square was bent by a line in such way that one vertex came to a side not containing this vertex. Three circles are inscribed into three obtained triangles (see Figure). Prove that one of their radii is equal to the sum of the two remaining ones.

(L.Steingarts)

4 Let $A B C$ be an isosceles triangle with $\angle B=120^{\circ}$. Points P and Q are chosen on the prolongations of segments $A B$ and $C B$ beyond point B so that the rays $A Q$ and $C P$ intersect and are perpendicular to each other. Prove that $\angle P Q B=2 \angle P C Q$.
(A.Akopyan, D.Shvetsov)

5 Do there exist a convex quadrilateral and a point P inside it such that the sum of distances from P to the vertices of the quadrilateral is greater than its perimeter?
(A.Akopyan)

6 Let ω be the circumcircle of triangle $A B C$. A point B_{1} is chosen on the prolongation of side $A B$ beyond point B so that $A B_{1}=A C$. The angle bisector of $\angle B A C$ meets ω again at point W. Prove that the orthocenter of triangle $A W B_{1}$ lies on ω.
(A.Tumanyan)

7 The altitudes $A A_{1}$ and $C C_{1}$ of an acute-angled triangle $A B C$ meet at point H. Point Q is the reflection of the midpoint of $A C$ in line $A A_{1}$, point P is the midpoint of segment $A_{1} C_{1}$. Prove that $\angle Q P H=90^{\circ}$.
(D.Shvetsov)

8 A square is divided into several (greater than one) convex polygons with mutually different numbers of sides. Prove that one of these polygons is a triangle.
(A.Zaslavsky)

- \quad Grade 9

1 The altitudes $A A_{1}$ and $B B_{1}$ of an acute-angled triangle ABC meet at point O. Let $A_{1} A_{2}$ and $B_{1} B_{2}$ be the altitudes of triangles $O B A_{1}$ and $O A B_{1}$ respectively. Prove that $A_{2} B_{2}$ is parallel to $A B$. (L.Steingarts)

2 Three parallel lines passing through the vertices A, B, and C of triangle $A B C$ meet its circumcircle again at points A_{1}, B_{1}, and C_{1} respectively. Points A_{2}, B_{2}, and C_{2} are the reflections of points A_{1}, B_{1}, and C_{1} in $B C, C A$, and $A B$ respectively. Prove that the lines $A A_{2}, B B_{2}, C C_{2}$ are concurrent.
(D.Shvetsov, A.Zaslavsky)

3 In triangle $A B C$, the bisector $C L$ was drawn. The incircles of triangles $C A L$ and $C B L$ touch $A B$ at points M and N respectively. Points M and N are marked on the picture, and then the whole picture except the points A, L, M, and N is erased. Restore the triangle using a compass and a ruler.

(V.Protasov)

4 Determine all integer $n>3$ for which a regular n-gon can be divided into equal triangles by several (possibly intersecting) diagonals.

(B.Frenkin)

5 Let $A B C$ be an isosceles right-angled triangle. Point D is chosen on the prolongation of the hypothenuse $A B$ beyond point A so that $A B=2 A D$. Points M and N on side $A C$ satisfy the relation $A M=N C$. Point K is chosen on the prolongation of $C B$ beyond point B so that $C N=B K$. Determine the angle between lines $N K$ and $D M$.
(M.Kungozhin)

6 Let $A B C$ be an isosceles triangle with $B C=a$ and $A B=A C=b$. Segment $A C$ is the base of an isosceles triangle $A D C$ with $A D=D C=a$ such that points D and B share the opposite sides of AC. Let $C M$ and $C N$ be the bisectors in triangles $A B C$ and $A D C$ respectively. Determine the circumradius of triangle $C M N$.
(M.Rozhkova)
$7 \quad$ A convex pentagon P is divided by all its diagonals into ten triangles and one smaller pentagon P^{\prime}. Let N be the sum of areas of five triangles adjacent to the sides of P decreased by the area of P^{\prime}. The same operations are performed with the pentagon P^{\prime}, let N^{\prime} be the similar difference calculated for this pentagon. Prove that $N>N^{\prime}$.
(A.Belov)
$8 \quad$ Let $A H$ be an altitude of an acute-angled triangle $A B C$. Points K and L are the projections of H onto sides $A B$ and $A C$. The circumcircle of $A B C$ meets line $K L$ at points P and Q, and meets line $A H$ at points A and T. Prove that H is the incenter of triangle $P Q T$.
(M.Plotnikov)

- \quad Grade 10

1 Determine all integer n such that a surface of an $n \times n \times n$ grid cube can be pasted in one layer by paper 1×2 rectangles so that each rectangle has exactly five neighbors (by a line segment).
(A.Shapovalov)

2 We say that a point inside a triangle is good if the lengths of the cevians passing through this point are inversely proportional to the respective side lengths. Find all the triangles for which the number of good points is maximal.
(A.Zaslavsky, B.Frenkin)

3 Let M and I be the centroid and the incenter of a scalene triangle $A B C$, and let r be its inradius. Prove that $M I=r / 3$ if and only if $M I$ is perpendicular to one of the sides of the triangle.
(A.Karlyuchenko)

4 Consider a square. Find the locus of midpoints of the hypothenuses of rightangled triangles with the vertices lying on three different sides of the square and not coinciding with its vertices.

(B.Frenkin)

5 A quadrilateral $A B C D$ with perpendicular diagonals is inscribed into a circle ω. Two arcs α and β with diameters AB and $C D$ lie outside ω. Consider two crescents formed by the circle ω and the arcs α and β (see Figure). Prove that the maximal radii of the circles inscribed into these crescents are equal.
(F.Nilov)

6 Consider a tetrahedron $A B C D$. A point X is chosen outside the tetrahedron so that segment $X D$ intersects face $A B C$ in its interior point. Let A^{\prime}, B^{\prime}, and C^{\prime} be the projections of D onto the planes $X B C, X C A$, and $X A B$ respectively. Prove that $A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+C^{\prime} A^{\prime} \leq D A+D B+D C$. (V.Yassinsky)

7 Consider a triangle $A B C$. The tangent line to its circumcircle at point C meets line $A B$ at point D. The tangent lines to the circumcircle of triangle $A C D$ at points A and C meet at point K. Prove that line $D K$ bisects segment $B C$.
(F.Ivlev)

8 A point M lies on the side $B C$ of square $A B C D$. Let X, Y, and Z be the incenters of triangles $A B M, C M D$, and $A M D$ respectively. Let H_{x}, H_{y}, and H_{z} be the orthocenters of triangles $A X B$, $C Y D$, and $A Z D$. Prove that H_{x}, H_{y}, and H_{z} are collinear.

