Art of Problem Solving

AoPS Community

2013 Sharygin Geometry Olympiad

Sharygin Geometry Olympiad 2013

www.artofproblemsolving.com/community/c3685
by aZpElr68Cb51U51qy90M, tweener, LarrySnake, v_Enhance, Math-lover123, Snakes, parmenides51, jayme, Nguyenhuyhoang

- First Round

1 Let $A B C$ be an isosceles triangle with $A B=B C$. Point E lies on the side $A B$, and $E D$ is the perpendicular from E to $B C$. It is known that $A E=D E$. Find $\angle D A C$.

2 Let $A B C$ be an isosceles triangle $(A C=B C)$ with $\angle C=20^{\circ}$. The bisectors of angles A and B meet the opposite sides at points A_{1} and B_{1} respectively. Prove that the triangle $A_{1} O B_{1}$ (where O is the circumcenter of $A B C$) is regular.

3 Let $A B C$ be a right-angled triangle ($\angle B=90^{\circ}$). The excircle inscribed into the angle A touches the extensions of the sides $A B, A C$ at points A_{1}, A_{2} respectively; points C_{1}, C_{2} are defined similarly. Prove that the perpendiculars from A, B, C to $C_{1} C_{2}, A_{1} C_{1}, A_{1} A_{2}$ respectively, concur.

4 Let $A B C$ be a nonisosceles triangle. Point O is its circumcenter, and point K is the center of the circumcircle w of triangle $B C O$. The altitude of $A B C$ from A meets w at a point P. The line $P K$ intersects the circumcircle of $A B C$ at points E and F. Prove that one of the segments $E P$ and $F P$ is equal to the segment $P A$.

5 Four segments drawn from a given point inside a convex quadrilateral to its vertices, split the quadrilateral into four equal triangles. Can we assert that this quadrilateral is a rhombus?

6 Diagonals $A C$ and $B D$ of a trapezoid $A B C D$ meet at P. The circumcircles of triangles $A B P$ and $C D P$ intersect the line $A D$ for the second time at points X and Y respectively. Let M be the midpoint of segment $X Y$. Prove that $B M=C M$.

7 Let $B D$ be a bisector of triangle $A B C$. Points I_{a}, I_{c} are the incenters of triangles $A B D, C B D$ respectively. The line $I_{a} I_{c}$ meets $A C$ in point Q. Prove that $\angle D B Q=90^{\circ}$.

8 Let X be an arbitrary point inside the circumcircle of a triangle $A B C$. The lines $B X$ and $C X$ meet the circumcircle in points K and L respectively. The line $L K$ intersects $B A$ and $A C$ at points E and F respectively. Find the locus of points X such that the circumcircles of triangles $A F K$ and $A E L$ touch.

9 Let T_{1} and T_{2} be the points of tangency of the excircles of a triangle $A B C$ with its sides $B C$ and $A C$ respectively. It is known that the reflection of the incenter of $A B C$ across the midpoint of $A B$ lies on the circumcircle of triangle $C T_{1} T_{2}$. Find $\angle B C A$.

10 The incircle of triangle $A B C$ touches the side $A B$ at point C^{\prime}; the incircle of triangle $A C C^{\prime}$ touches the sides $A B$ and $A C$ at points C_{1}, B_{1}; the incircle of triangle $B C C^{\prime}$ touches the sides $A B$ and $B C$ at points C_{2}, A_{2}. Prove that the lines $B_{1} C_{1}, A_{2} C_{2}$, and $C C^{\prime}$ concur.

11 a) Let $A B C D$ be a convex quadrilateral and $r_{1} \leq r_{2} \leq r_{3} \leq r_{4}$ be the radii of the incircles of triangles $A B C, B C D, C D A, D A B$. Can the inequality $r_{4}>2 r_{3}$ hold?
b) The diagonals of a convex quadrilateral $A B C D$ meet in point E. Let $r_{1} \leq r_{2} \leq r_{3} \leq r_{4}$ be the radii of the incircles of triangles $A B E, B C E, C D E, D A E$. Can the inequality $r_{2}>2 r_{1}$ hold?

12 On each side of triangle $A B C$, two distinct points are marked. It is known that these points are the feet of the altitudes and of the bisectors.
a) Using only a ruler determine which points are the feet of the altitudes and which points are the feet of the bisectors.
b) Solve p.a) drawing only three lines.

13 Let A_{1} and C_{1} be the tangency points of the incircle of triangle $A B C$ with $B C$ and $A B$ respectively, A^{\prime} and C^{\prime} be the tangency points of the excircle inscribed into the angle B with the extensions of $B C$ and $A B$ respectively. Prove that the orthocenter H of triangle $A B C$ lies on $A_{1} C_{1}$ if and only if the lines $A^{\prime} C_{1}$ and $B A$ are orthogonal.

14 Let M, N be the midpoints of diagonals $A C, B D$ of a right-angled trapezoid $A B C D(\measuredangle A=$ $\measuredangle D=90^{\circ}$).
The circumcircles of triangles $A B N, C D M$ meet the line $B C$ in the points Q, R.
Prove that the distances from Q, R to the midpoint of $M N$ are equal.
15 (a) Triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are inscribed into triangle $A B C$ so that $C_{1} A_{1} \perp B C, A_{1} B_{1} \perp$ $C A, B_{1} C_{1} \perp A B, B_{2} A_{2} \perp B C, C_{2} B_{2} \perp C A, A_{2} C_{2} \perp A B$. Prove that these triangles are equal.
(b) Points $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ lie inside a triangle $A B C$ so that A_{1} is on segment $A B_{1}, B_{1}$ is on segment $B C_{1}, C_{1}$ is on segment $C A_{1}, A_{2}$ is on segment $A C_{2}, B_{2}$ is on segment $B A_{2}, C_{2}$ is on segment $C B_{2}$, and the angles $B A A_{1}, C B B_{2}, A C C_{1}, C A A_{2}, A B B_{2}, B C C_{2}$ are equal. Prove that the triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are equal.

16 The incircle of triangle $A B C$ touches $B C, C A, A B$ at points A_{1}, B_{1}, C_{1}, respectively. The perpendicular from the incenter I to the median from vertex C meets the line $A_{1} B_{1}$ in point K. Prove that $C K$ is parallel to $A B$.

17 An acute angle between the diagonals of a cyclic quadrilateral is equal to ϕ. Prove that an acute angle between the diagonals of any other quadrilateral having the same sidelengths is smaller than ϕ.

AoPS Community

2013 Sharygin Geometry Olympiad

18 Let $A D$ be a bisector of triangle $A B C$. Points M and N are projections of B and C respectively to $A D$. The circle with diameter $M N$ intersects $B C$ at points X and Y. Prove that $\angle B A X=$ $\angle C A Y$.

19 a) The incircle of a triangle $A B C$ touches $A C$ and $A B$ at points B_{0} and C_{0} respectively. The bisectors of angles B and C meet the perpendicular bisector to the bisector $A L$ in points Q and P respectively. Prove that the lines $P C_{0}, Q B_{0}$ and $B C$ concur.
b) Let $A L$ be the bisector of a triangle $A B C$. Points O_{1} and O_{2} are the circumcenters of triangles $A B L$ and $A C L$ respectively. Points B_{1} and C_{1} are the projections of C and B to the bisectors of angles B and C respectively. Prove that the lines $O_{1} C_{1}, O_{2} B_{1}$, and $B C$ concur.
c) Prove that the two points obtained in pp. a) and b) coincide.

20 Let C_{1} be an arbitrary point on the side $A B$ of triangle $A B C$. Points A_{1} and B_{1} on the rays $B C$ and $A C$ are such that $\angle A C_{1} B_{1}=\angle B C_{1} A_{1}=\angle A C B$. The lines $A A_{1}$ and $B B_{1}$ meet in point C_{2}. Prove that all the lines $C_{1} C_{2}$ have a common point.

21 Chords $B C$ and $D E$ of circle ω meet at point A. The line through D parallel to $B C$ meets ω again at F, and $F A$ meets ω again at T. Let $M=E T \cap B C$ and let N be the reflection of A over M. Show that ($D E N$) passes through the midpoint of $B C$.

22 The common perpendiculars to the opposite sidelines of a nonplanar quadrilateral are mutually orthogonal. Prove that they intersect.

23 Two convex polytopes A and B do not intersect. The polytope A has exactly 2012 planes of symmetry. What is the maximal number of symmetry planes of the union of A and B, if B has a) 2012 , b) 2013 symmetry planes?
c) What is the answer to the question of $p . b)$, if the symmetry planes are replaced by the symmetry axes?

- Final Round
- \quad Grade level 8

1 Let $A B C D E$ be a pentagon with right angles at vertices B and E and such that $A B=A E$ and $B C=C D=D E$. The diagonals $B D$ and $C E$ meet at point F. Prove that $F A=A B$.

2 Two circles with centers O_{1} and O_{2} meet at points A and B. The bisector of angle $O_{1} A O_{2}$ meets the circles for the second time at points C and D. Prove that the distances from the circumcenter of triangle $C B D$ to O_{1} and to O_{2} are equal.

3 Each vertex of a convex polygon is projected to all nonadjacent sidelines. Can it happen that each of these projections lies outside the corresponding side?

4 The diagonals of a convex quadrilateral $A B C D$ meet at point L. The orthocenter H of the triangle $L A B$ and the circumcenters O_{1}, O_{2}, and O_{3} of the triangles $L B C, L C D$, and $L D A$ were marked. Then the whole configuration except for points H, O_{1}, O_{2}, and O_{3} was erased. Restore it using a compass and a ruler.

5 The altitude $A A^{\prime}$, the median $B B^{\prime}$, and the angle bisector $C C^{\prime}$ of a triangle $A B C$ are concurrent at point K. Given that $A^{\prime} K=B^{\prime} K$, prove that $C^{\prime} K=A^{\prime} K$.

6 Dear Mathlinkers,

1. A, B the end points of an arch circle
2. (O) a circle tangent to $A B$ intersecting the arch in question
3. T the point of contact of (0) and $A B$
4. C, D the points of intersection of (O) with the arch in the order A, D, C, B
5. E, F the points of intersection of $A C$ and $D T, B D$ and CT.

Prove : EF is parallel to $A B$.
Sincerely
Jean-Louis
7 In the plane, four points are marked. It is known that these points are the centers of four circles, three of which are pairwise externally tangent, and all these three are internally tangent to the fourth one. It turns out, however, that it is impossible to determine which of the marked points is the center of the fourth (the largest) circle. Prove that these four points are the vertices of a rectangle.

8 Let P be an arbitrary point on the arc $A C$ of the circumcircle of a fixed triangle $A B C$, not containing B. The bisector of angle $A P B$ meets the bisector of angle $B A C$ at point P_{a} the bisector of angle $C P B$ meets the bisector of angle $B C A$ at point P_{c}. Prove that for all points P, the circumcenters of triangles $P P_{a} P_{c}$ are collinear.
by I. Dmitriev

- \quad Grade level 9

1 All angles of a cyclic pentagon $A B C D E$ are obtuse. The sidelines $A B$ and $C D$ meet at point E_{1}, the sidelines $B C$ and $D E$ meet at point A_{1}. The tangent at B to the circumcircle of the triangle $B E_{1} C$ meets the circumcircle ω of the pentagon for the second time at point B_{1}. The tangent at D to the circumcircle of the triangle $D A_{1} C$ meets ω for the second time at point D_{1}. Prove that $B_{1} D_{1} / / A E$

2 Two circles ω_{1} and ω_{2} with centers O_{1} and O_{2} meet at points A and B. Points C and D on ω_{1} and ω_{2}, respectively, lie on the opposite sides of the line $A B$ and are equidistant from this line.

AoPS Community

2013 Sharygin Geometry Olympiad

Prove that C and D are equidistant from the midpoint of $O_{1} O_{2}$.
3 Each sidelength of a convex quadrilateral $A B C D$ is not less than 1 and not greater than 2 . The diagonals of this quadrilateral meet at point O. Prove that $S_{A O B}+S_{C O D} \leq 2\left(S_{A O D}+S_{B O C}\right)$.
$4 \quad$ A point F inside a triangle $A B C$ is chosen so that $\angle A F B=\angle B F C=\angle C F A$. The line passing through F and perpendicular to $B C$ meets the median from A at point A_{1}. Points B_{1} and C_{1} are defined similarly. Prove that the points A_{1}, B_{1}, and C_{1} are three vertices of some regular hexagon, and that the three remaining vertices of that hexagon lie on the sidelines of $A B C$.
$5 \quad$ Points E and F lie on the sides $A B$ and $A C$ of a triangle $A B C$. Lines $E F$ and $B C$ meet at point S. Let M and N be the midpoints of $B C$ and $E F$, respectively. The line passing through A and parallel to $M N$ meets $B C$ at point K. Prove that $\frac{B K}{C K}=\frac{F S}{E S}$.
$6 \quad$ A line ℓ passes through the vertex B of a regular triangle $A B C$. A circle ω_{a} centered at I_{a} is tangent to $B C$ at point A_{1}, and is also tangent to the lines ℓ and $A C$. A circle ω_{c} centered at I_{c} is tangent to $B A$ at point C_{1}, and is also tangent to the lines ℓ and $A C$. Prove that the orthocenter of triangle $A_{1} B C_{1}$ lies on the line $I_{a} I_{c}$.

7 Two fixed circles ω_{1} and ω_{2} pass through point O. A circle of an arbitrary radius R centered at O meets ω_{1} at points A and B, and meets ω_{2} at points C and D. Let X be the common point of lines $A C$ and $B D$. Prove that all the points X are collinear as R changes.

8 Three cyclists ride along a circular road with radius 1 km counterclockwise. Their velocities are constant and different. Does there necessarily exist (in a sufficiently long time) a moment when all the three distances between cyclists are greater than 1 km ?
by V. Protasov

- \quad Grade level 10

1 A circle k passes through the vertices B, C of a scalene triangle $A B C$. k meets the extensions of $A B, A C$ beyond B, C at P, Q respectively. Let A_{1} is the foot the altitude drop from A to $B C$. Suppose $A_{1} P=A_{1} Q$. Prove that $\widehat{P A_{1} Q}=2 \widehat{B A C}$.

2 Let $A B C D$ is a tangential quadrilateral such that $A B=C D>B C$. $A C$ meets $B D$ at L. Prove that $\widehat{A L B}$ is acute.

According to the jury, they want to propose a more generalized problem is to prove ($A B-$ $C D)^{2}<(A D-B C)^{2}$, but this problem has appeared some time ago

3 Let X be a point inside triangle $A B C$ such that $X A . B C=X B . A C=X C . A C$. Let I_{1}, I_{2}, I_{3} be the incenters of $X B C, X C A, X A B$. Prove that $A I_{1}, B I_{2}, C I_{3}$ are concurrent.

Of course, the most natural way to solve this is the Ceva sin theorem, but there is an another approach that may surprise you;), try not to use the Ceva theorem :))

4 Given a square cardboard of area $\frac{1}{4}$, and a paper triangle of area $\frac{1}{2}$ such that the square of its sidelength is a positive integer. Prove that the triangle can be folded in some ways such that the squace can be placed inside the folded figure so that both of its faces are completely covered with paper.

Proposed by N.Beluhov, Bulgaria
$5 \quad$ Let ABCD is a cyclic quadrilateral inscribed in (O). E, F are the midpoints of arcs $A B$ and $C D$ not containing the other vertices of the quadrilateral. The line passing through E, F and parallel to the diagonals of $A B C D$ meet at E, F, K, L. Prove that $K L$ passes through O.

6 The altitudes $A A_{1}, B B_{1}, C C_{1}$ of an acute triangle $A B C$ concur at H. The perpendicular lines from H to $B_{1} C_{1}, A_{1} C_{1}$ meet rays $C A, C B$ at P, Q respectively. Prove that the line from C perpendicular to $A_{1} B_{1}$ passes through the midpoint of $P Q$.

7 Given five fixed points in the space. It is known that these points are centers of five spheres, four of which are pairwise externally tangent, and all these point are internally tangent to the fifth one. It turns out that it is impossible to determine which of the marked points is the center of the largest sphere. Find the ratio of the greatest and the smallest radii of the spheres.

8 Two fixed circles are given on the plane, one of them lies inside the other one. From a point C moving arbitrarily on the external circle, draw two chords $C A, C B$ of the larger circle such that they tangent to the smalaler one. Find the locus of the incenter of triangle $A B C$.

