AoPS Community

National Mathematical Olympiad 2010

www.artofproblemsolving.com/community/c3686
by fattypiggy 123, Amir Hossein

1 Let $C D$ be a chord of a circle Γ_{1} and $A B$ a diameter of Γ_{1} perpendicular to $C D$ at N with $A N>N B$. A circle Γ_{2} centered at C with radius $C N$ intersects Γ_{1} at points P and Q. The line $P Q$ intersects $C D$ at M and $A C$ at K; and the extension of $N K$ meets Γ_{2} at L. Prove that $P Q$ is perpendicular to $A L$

2 Let $\left(a_{n}\right),\left(b_{n}\right), n=1,2, \ldots$ be two sequences of integers defined by $a_{1}=1, b_{1}=0$ and for $n \geq 1$ $a_{n+1}=7 a_{n}+12 b_{n}+6 b_{n+1}=4 a_{n}+7 b_{n}+3$

Prove that a_{n}^{2} is the difference of two consecutive cubes.
3 Suppose that a_{1}, \ldots, a_{15} are prime numbers forming an arithmetic progression with common difference $d>0$ if $a_{1}>15$ show that $d>30000$

4 Let n be a positive integer. Find the smallest positive integer k with the property that for any colouring nof the squares of a $2 n$ by k chessboard with n colours, there are 2 columns and 2 rows such that the 4 squares in their intersections have the same colour.

5 A prime number p and integers x, y, z with $0<x<y<z<p$ are given. Show that if the numbers x^{3}, y^{3}, z^{3} give the same remainder when divided by p, then $x^{2}+y^{2}+z^{2}$ is divisible by $x+y+z$.

