AoPS Community

National Mathematical Olympiad 2011

www.artofproblemsolving.com/community/c3687
by oneplusone

1 In the acute-angled non-isosceles triangle $A B C, O$ is its circumcenter, H is its orthocenter and $A B>A C$. Let Q be a point on $A C$ such that the extension of $H Q$ meets the extension of $B C$ at the point P. Suppose $B D=D P$, where D is the foot of the perpendicular from A onto $B C$. Prove that $\angle O D Q=90^{\circ}$.

2 If 46 squares are colored red in a 9×9 board, show that there is a 2×2 block on the board in which at least 3 of the squares are colored red.

3 Let $x, y, z>0$ such that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}<\frac{1}{x y z}$. Show that

$$
\frac{2 x}{\sqrt{1+x^{2}}}+\frac{2 y}{\sqrt{1+y^{2}}}+\frac{2 z}{\sqrt{1+z^{2}}}<3 .
$$

4 Find all polynomials $P(x)$ with real coefficients such that

$$
P(a) \in \mathbb{Z} \text { implies that } a \in \mathbb{Z}
$$

$5 \quad$ Find all pairs of positive integers (m, n) such that

$$
m+n-\frac{3 m n}{m+n}=\frac{2011}{3} .
$$

