AoPS Community

National Mathematical Olympiad 2012

www.artofproblemsolving.com/community/c3688
by 61plus

1 The incircle with centre I of the triangle $A B C$ touches the sides $B C, C A$ and $A B$ at D, E, F respectively. The line $I D$ intersects the segment $E F$ at K. Proof that A, K, M collinear, where M is the midpoint of $B C$.

2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ so that $(x+y)(f(x)-f(y))=(x-y) f(x+y)$ for all x, y that belongs to \mathbb{R}.

3 For each $i=1,2, . . N$, let a_{i}, b_{i}, c_{i} be integers such that at least one of them is odd. Show that one can find integers x, y, z such that $x a_{i}+y b_{i}+z c_{i}$ is odd for at least $\frac{4}{7} N$ different values of i.

4 Let p be an odd prime. Prove that

$$
1^{p-2}+2^{p-2}+\cdots+\left(\frac{p-1}{2}\right)^{p-2} \equiv \frac{2-2^{p}}{p} \quad(\bmod p) .
$$

5 There are 2012 distinct points in the plane, each of which is to be coloured using one of n colours, so that the numbers of points of each colour are distinct. A set of n points is said to be multi-coloured if their colours are distinct. Determine n that maximizes the number of multi-coloured sets.

