Art of Problem Solving

AoPS Community

Singapore Team Selection Test 2004

www.artofproblemsolving.com/community/c3689
by Valiowk

Day 1

1 Let D be a point in the interior of $\triangle A B C$ such that $A B=a b, A C=a c, A D=a d, B C=b c$, $B D=b d$ and $C D=c d$. Prove that $\angle A B D+\angle A C D=\frac{\pi}{3}$.

2 Let $0<a, b, c<1$ with $a b+b c+c a=1$. Prove that

$$
\frac{a}{1-a^{2}}+\frac{b}{1-b^{2}}+\frac{c}{1-c^{2}} \geq \frac{3 \sqrt{3}}{2} .
$$

Determine when equality holds.
3 Let $p \geq 5$ be a prime number. Prove that there exist at least 2 distinct primes q_{1}, q_{2} satisfying
$1<q_{i}<p-1$ and $q_{i}^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$, for $i=1,2$.

Day 2

1 Let $x_{0}, x_{1}, x_{2}, \ldots$ be the sequence defined by $x_{i}=2^{i}$ if $0 \leq i \leq 2003 x_{i}=\sum_{j=1}^{2004} x_{i-j}$ if $i \geq 2004$ Find the greatest k for which the sequence contains k consecutive terms divisible by 2004.

2 Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.

Proposed by Hojoo Lee, Korea
$3 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f\left(\frac{x+y}{x-y}\right)=\frac{f(x)+f(y)}{f(x)-f(y)}
$$

for all $x \neq y$.

