Art of Problem Solving

AoPS Community

2007 Singapore Team Selection Test

Singapore Team Selection Test 2007

www.artofproblemsolving.com/community/c3690
by mr.danh

Day 1

1 Find all pairs of nonnegative integers (x, y) satisfying $(14 y)^{x}+y^{x+y}=2007$.
2 Let $A B C D$ be a convex quadrilateral inscribed in a circle with M and N the midpoints of the diagonals $A C$ and $B D$ respectively. Suppose that $A C$ bisects $\angle B M D$. Prove that $B D$ bisects $\angle A N C$.

3 Let $a_{1}, a_{2}, \ldots, a_{8}$ be 8 distinct points on the circumference of a circle such that no three chords, each joining a pair of the points, are concurrent. Every 4 of the 8 points form a quadrilateral which is called a quad. If two chords, each joining a pair of the 8 points, intersect, the point of intersection is called a bullet. Suppose some of the bullets are coloured red. For each pair ($i j$), with $1 \leq i<j \leq 8$, let $r(i, j)$ be the number of quads, each containing a_{i}, a_{j} as vertices, whose diagonals intersect at a red bullet. Determine the smallest positive integer n such that it is possible to colour n of the bullets red so that $r(i, j)$ is a constant for all pairs (i, j).

Day 2

1 Two circles $\left(O_{1}\right)$ and $\left(O_{2}\right)$ touch externally at the point C and internally at the points A and B respectively with another circle (O). Suppose that the common tangent of $\left(O_{1}\right)$ and $\left(O_{2}\right)$ at C meets (O) at P such that $P A=P B$. Prove that $P O$ is perpendicular to $A B$.

2 Prove the inequality

$$
\sum_{i<j} \frac{a_{i} a_{j}}{a_{i}+a_{j}} \leq \frac{n}{2\left(a_{1}+a_{2}+\cdots+a_{n}\right)} \sum_{i<j} a_{i} a_{j}
$$

for all positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$.
3 Let A, B, C be 3 points on the plane with integral coordinates. Prove that there exists a point P with integral coordinates distinct from A, B and C such that the interiors of the segments $P A, P B$ and $P C$ do not contain points with integral coordinates.

