

AoPS Community

Singapore Team Selection Test 2007

www.artofproblemsolving.com/community/c3690 by mr.danh

Day 1

1	Find all pairs of nonnegative integers (x, y) satisfying $(14y)^x + y^{x+y} = 2007$.
2	Let $ABCD$ be a convex quadrilateral inscribed in a circle with M and N the midpoints of the diagonals AC and BD respectively. Suppose that AC bisects $\angle BMD$. Prove that BD bisects $\angle ANC$.
3	Let a_1, a_2, \ldots, a_8 be 8 distinct points on the circumference of a circle such that no three chords, each joining a pair of the points, are concurrent. Every 4 of the 8 points form a quadrilateral which is called a <i>quad</i> . If two chords, each joining a pair of the 8 points, intersect, the point of intersection is called a <i>bullet</i> . Suppose some of the bullets are coloured red. For each pair (ij) , with $1 \le i < j \le 8$, let $r(i, j)$ be the number of quads, each containing a_i, a_j as vertices, whose diagonals intersect at a red bullet. Determine the smallest positive integer n such that it is possible to colour n of the bullets red so that $r(i, j)$ is a constant for all pairs (i, j) .

Day 2

- **1** Two circles (O_1) and (O_2) touch externally at the point *C* and internally at the points *A* and *B* respectively with another circle (O). Suppose that the common tangent of (O_1) and (O_2) at *C* meets (O) at *P* such that PA = PB. Prove that *PO* is perpendicular to *AB*.
- **2** Prove the inequality

$$\sum_{i < j} \frac{a_i a_j}{a_i + a_j} \le \frac{n}{2(a_1 + a_2 + \dots + a_n)} \sum_{i < j} a_i a_j$$

for all positive real numbers a_1, a_2, \ldots, a_n .

3 Let *A*, *B*, *C* be 3 points on the plane with integral coordinates. Prove that there exists a point *P* with integral coordinates distinct from *A*, *B* and *C* such that the interiors of the segments *PA*, *PB* and *PC* do not contain points with integral coordinates.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

© 2019 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.