AoPS Community

Mikls Schweitzer 1962

www.artofproblemsolving.com/community/c3696
by ehsan2004

1 Let f and g be polynomials with rational coefficients, and let F and G denote the sets of values of f and g at rational numbers. Prove that $F=G$ holds if and only if $f(x)=g(a x+b)$ for some suitable rational numbers $a \neq 0$ and b.
E. Fried

2 Determine the roots of unity in the field of p-adic numbers.

L. Fuchs

$3 \quad$ Let A and B be two Abelian groups, and define the sum of two homomorphisms η and χ from A to B by

$$
a(\eta+\chi)=a \eta+a \chi \text { for all } a \in A .
$$

With this addition, the set of homomorphisms from A to B forms an Abelian group H. Suppose now that A is a p-group (p a prime number). Prove that in this case H becomes a topological group under the topology defined by taking the subgroups $p^{k} H(k=1,2, \ldots)$ as a neighborhood base of 0 . Prove that H is complete in this topology and that every connected component of H consists of a single element. When is H compact in this topology? [L. Fuchs]

4 Show that

$$
\prod_{1 \leq x<y \leq \frac{p-1}{2}}\left(x^{2}+y^{2}\right) \equiv(-1)^{\left\lfloor\frac{p+1}{8}\right\rfloor}(\bmod p)
$$

for every prime $p \equiv 3(\bmod 4)$. [J. Suranyi]
$5 \quad$ Let f be a finite real function of one variable. Let $\bar{D} f$ and $\underline{D} f$ be its upper and lower derivatives, respectively, that is,

$$
\begin{aligned}
& \bar{D} f=\limsup _{h, k \rightarrow 0_{h, k \geq 0_{h+k>0}} \frac{f(x+h)-f(x-k)}{h+k}}^{\underline{D} f=\liminf _{h, k \rightarrow 0_{h, k \geq 0^{\prime}+k>0}} \frac{f(x+h)-f(x-k)}{h+k} .} .
\end{aligned}
$$

Show that $\bar{D} f$ and $\underline{D} f$ are Borel-measurable functions. [A. Csaszar]
6 Let E be a bounded subset of the real line, and let Ω be a system of (non degenerate) closed intervals such that for
each $x \in E$ there exists an $I \in \Omega$ with left endpoint x. Show that for every $\varepsilon>0$ there exists a finite number of pairwise non overlapping intervals belonging to Ω that cover E with the exception of a subset of outer measure less than ε. [J. Czipszer]

7 Prove that the function

$$
f(\nu)=\int_{1}^{\frac{1}{\nu}} \frac{d x}{\sqrt{\left(x^{2}-1\right)\left(1-\nu^{2} x^{2}\right)}}
$$

(where the positive value of the square root is taken) is monotonically decreasing in the interval $0<\nu<1$. [P. Turan]

8 Denote by $M(r, f)$ the maximum modulus on the circle $|z|=r$ of the transcendent entire function $f(z)$, and by $M_{n}(r, f)$ that of the $n t h$ partial sum of the power series of $f(z)$. Prove that the existence of an entire function $f_{0}(z)$ and a corresponding sequence of positive numbers $r_{1}<r_{2}<\ldots \rightarrow+\infty$ such that

$$
\limsup _{n \rightarrow \infty} \frac{M_{n}\left(r_{n}, f_{0}\right)}{M\left(r_{n}, f_{0}\right)}=+\infty
$$

[P. Turan]
9 Find the minimum possible sum of lengths of edges of a prism all of whose edges are tangent of a unit sphere. [Muller-Pfeiffer].

10 From a given triangle of unit area, we choose two points independetly with uniform distribution. The straight line connecting these points divides the triangle. with probability one, into a triangle and a quadrilateral. Calculate the expected values of the areas of these two regions. [A. Renyi]

