AoPS Community

Mikls Schweitzer 1963

www.artofproblemsolving.com/community/c3697
by ehsan2004

1 Show that the perimeter of an arbitrary planar section of a tetrahedron is less than the perimeter of one of the faces of the tetrahedron. [Gy. Hajos]

2 Show that the center of gravity of a convex region in the plane halves at least three chords of the region. [Gy. Hajos]

3 Let $R=R_{1} \oplus R_{2}$ be the direct sum of the rings R_{1} and R_{2}, and let N_{2} be the annihilator ideal of R_{2} (in R_{2}). Prove that R_{1} will be an ideal in every ring \widetilde{R} containing R as an ideal if and only if the only homomorphism from R_{1} to N_{2} is the zero homomorphism. [Gy. Hajos]

4 Call a polynomial positive reducible if it can be written as a product of two nonconstant polynomials with positive real coefficients. Let $f(x)$ be a polynomial with $f(0) \neq 0$ such that $f\left(x^{n}\right)$ is positive reducible for some natural number n. Prove that $f(x)$ itself is positive reducible. [L. Redei]

5 Let H be a set of real numbers that does not consist of 0 alone and is closed under addition. Further, let $f(x)$ be a real-valued function defined on H and satisfying the following conditions:

$$
f(x) \leq f(y) \text { if } x \leq y
$$

and

$$
f(x+y)=f(x)+f(y)(x, y \in H) .
$$

Prove that $f(x)=c x$ on H, where c is a nonnegative number. [M. Hosszu, R. Borges]
6 Show that if $f(x)$ is a real-valued, continuous function on the half-line $0 \leq x<\infty$, and

$$
\int_{0}^{\infty} f^{2}(x) d x<\infty
$$

then the function

$$
g(x)=f(x)-2 e^{-x} \int_{0}^{x} e^{t} f(t) d t
$$

satisfies

$$
\int_{0}^{\infty} g^{2}(x) d x=\int_{0}^{\infty} f^{2}(x) d x
$$

[B. Szokefalvi-Nagy]

7 Prove that for every convex function $f(x)$ defined on the interval $-1 \leq x \leq 1$ and having absolute value at most 1 , there is a linear function $h(x)$ such that

$$
\int_{-1}^{1}|f(x)-h(x)| d x \leq 4-\sqrt{8} .
$$

[L. Fejes-Toth]

8 Let the Fourier series

$$
\frac{a_{0}}{2}+\sum_{k \geq 1}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

of a function $f(x)$ be absolutely convergent, and let

$$
a_{k}^{2}+b_{k}^{2} \geq a_{k+1}^{2}+b_{k+1}^{2}(k=1,2, \ldots) .
$$

Show that

$$
\frac{1}{h} \int_{0}^{2 \pi}(f(x+h)-f(x-h))^{2} d x(h>0)
$$

is uniformly bounded in h. [K. Tandori]
9 Let $f(t)$ be a continuous function on the interval $0 \leq t \leq 1$, and define the two sets of points

$$
A_{t}=\{(t, 0): t \in[0,1]\}, B_{t}=\{(f(t), 1): t \in[0,1]\} .
$$

Show that the union of all segments $\overline{A_{t} B_{t}}$ is Lebesgue-measurable, and find the minimum of its measure with respect to all functions f. [A. Csaszar]

10 Select n points on a circle independently with uniform distribution. Let P_{n} be the probability that the center of the
circle is in the interior of the convex hull of these n points. Calculate the probabilities P_{3} and P_{4}. [A. Renyi]

