

AoPS Community

Mikls Schweitzer 1964

www.artofproblemsolving.com/community/c3698 by ehsan2004

- 1 Among all possible representations of the positive integer n as $n = \sum_{i=1}^{k} a_i$ with positive integers $k, a_1 < a_2 < ... < a_k$, when will the product $\prod_{i=1}^{k} a_i$ be maximum?
- **2** Let *p* be a prime and let

$$l_k(x,y) = a_k x + b_k y \ (k = 1, 2, ..., p^2)$$
.

be homogeneous linear polynomials with integral coefficients. Suppose that for every pair (ξ, η) of integers, not both divisible by p, the values $l_k(\xi, \eta)$, $1 \le k \le p^2$, represent every residue class mod p exactly p times. Prove that the set of pairs $\{(a_k, b_k) : 1 \le k \le p^2\}$ is identical mod p with the set $\{(m, n) : 0 \le m, n \le p - 1\}$.

- **3** Prove that the intersection of all maximal left ideals of a ring is a (two-sided) ideal.
- 4 Let $A_1, A_2, ..., A_n$ be the vertices of a closed convex *n*-gon *K* numbered consecutively. Show that at least n 3 vertices A_i have the property that the reflection of A_i with respect to the midpoint of $A_{i-1}A_{i+1}$

vertices A_i have the property that the reflection of A_i with respect to the midpoint of $A_{i-1}A_{i+1}$ is contained in K. (Indices are meant mod n.)

- **5** Is it true that on any surface homeomorphic to an open disc there exist two congruent curves homeomorphic to a circle?
- **6** Let $y_1(x)$ be an arbitrary, continuous, positive function on [0, A], where A is an arbitrary positive number. Let

$$y_{n+1} = 2 \int_0^x \sqrt{y_n(t)} dt \ (n = 1, 2, ...) .$$

Prove that the functions $y_n(x)$ converge to the function $y = x^2$ uniformly on [0, A].

- 7 Find all linear homogeneous differential equations with continuous coefficients (on the whole real line) such that for any solution f(t) and any real number c, f(t + c) is also a solution.
- **8** Let *F* be a closed set in the *n*-dimensional Euclidean space. Construct a function that is 0 on *F*, positive outside *F*, and whose partial derivatives all exist.
- **9** Let *E* be the set of all real functions on I = [0, 1]. Prove that one cannot define a topology on *E* in which $f_n \to f$ holds if and only if f_n converges to *f* almost everywhere.

AoPS Community

10 Let $\varepsilon_1, \varepsilon_2, ..., \varepsilon_{2n}$ be independent random variables such that $P(\varepsilon_i = 1) = P(\varepsilon_i = -1) = \frac{1}{2}$ for all *i*, and define $S_k = \sum_{i=1}^k \varepsilon_i$, $1 \le k \le 2n$. Let N_{2n} denote the number of integers $k \in [2, 2n]$ such that either $S_k > 0$, or $S_k = 0$ and $S_{k-1} > 0$. Compute the variance of N_{2n} .

Art of Problem Solving is an ACS WASC Accredited School.