Art of Problem Solving

AoPS Community

Mikls Schweitzer 1964

www.artofproblemsolving.com/community/c3698
by ehsan2004

1 Among all possible representations of the positive integer n as $n=\sum_{i=1}^{k} a_{i}$ with positive integers $k, a_{1}<a_{2}<\ldots<a_{k}$, when will the product $\prod_{i=1}^{k} a_{i}$ be maximum?

2 Let p be a prime and let

$$
l_{k}(x, y)=a_{k} x+b_{k} y\left(k=1,2, \ldots, p^{2}\right)
$$

be homogeneous linear polynomials with integral coefficients. Suppose that for every pair (ξ, η) of integers, not both divisible by p, the values $l_{k}(\xi, \eta), 1 \leq k \leq p^{2}$, represent every residue class $\bmod p$ exactly p times. Prove that the set of pairs $\left\{\left(a_{k}, b_{k}\right): 1 \leq k \leq p^{2}\right\}$ is identical $\bmod p$ with the set $\{(m, n): 0 \leq m, n \leq p-1\}$.

3 Prove that the intersection of all maximal left ideals of a ring is a (two-sided) ideal.
4 Let $A_{1}, A_{2}, \ldots, A_{n}$ be the vertices of a closed convex n-gon K numbered consecutively. Show that at least $n-3$
vertices A_{i} have the property that the reflection of A_{i} with respect to the midpoint of $A_{i-1} A_{i+1}$ is contained in K. (Indices are meant $\bmod n$.)

5 Is it true that on any surface homeomorphic to an open disc there exist two congruent curves homeomorphic to a circle?

6 Let $y_{1}(x)$ be an arbitrary, continuous, positive function on $[0, A]$, where A is an arbitrary positive number. Let

$$
y_{n+1}=2 \int_{0}^{x} \sqrt{y_{n}(t)} d t(n=1,2, \ldots) .
$$

Prove that the functions $y_{n}(x)$ converge to the function $y=x^{2}$ uniformly on $[0, A]$.
7 Find all linear homogeneous differential equations with continuous coefficients (on the whole real line) such that for any solution $f(t)$ and any real number $c, f(t+c)$ is also a solution.
$8 \quad$ Let F be a closed set in the n-dimensional Euclidean space. Construct a function that is 0 on F, positive outside F, and whose partial derivatives all exist.
$9 \quad$ Let E be the set of all real functions on $I=[0,1]$. Prove that one cannot define a topology on E in which $f_{n} \rightarrow f$ holds if and only if f_{n} converges to f almost everywhere.

10 Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{2 n}$ be independent random variables such that $P\left(\varepsilon_{i}=1\right)=P\left(\varepsilon_{i}=-1\right)=\frac{1}{2}$ for all i, and define $S_{k}=\sum_{i=1}^{k} \varepsilon_{i}, 1 \leq k \leq 2 n$. Let $N_{2 n}$ denote the number of integers $k \in[2,2 n]$ such that either $S_{k}>0$, or $S_{k}=0$ and $S_{k-1}>0$. Compute the variance of $N_{2 n}$.

