

AoPS Community

Mikls Schweitzer 1966

www.artofproblemsolving.com/community/c3700 by ehsan2004

- 1 Show that a segment of length h can go through or be tangent to at most $2\lfloor h/\sqrt{2} \rfloor + 2$ nonoverlapping unit spheres. *L.Fejes-Toth, A. Heppes*
- 2 Characterize those configurations of *n* coplanar straight lines for which the sum of angles between all pairs of lines is maximum.

L.Fejes-Toth, A. Heppes

3 Let f(n) denote the maximum possible number of right triangles determined by n coplanar points. Show that

$$\lim_{n \to \infty} \frac{f(n)}{n^2} = \infty \text{ and } \lim_{n \to \infty} \frac{f(n)}{n^3} = 0.$$

P. Erdos

4 Let *I* be an ideal of the ring $\mathbb{Z}[x]$ of all polynomials with integer coefficients such that

a) the elements of I do not have a common divisor of degree greater than 0, and

b) *I* contains of a polynomial with constant term 1.

Prove that *I* contains the polynomial $1 + x + x^2 + ... + x^{r-1}$ for some natural number *r*.

Gy. Szekeres

5 A "letter *T*" erected at point *A* of the *x*-axis in the *xy*-plane is the union of a segment *AB* in the upper half-plane perpendicular to the *x*-axis and a segment *CD* containing *B* in its interior and parallel to the *x*-axis. Show that it is impossible to erect a letter *T* at every point of the *x*-axis so that the union of those erected at rational points is disjoint from the union of those erected at irrational points.

A.Csaszar

6 A sentence of the following type if often heard in Hungarian weather reports: "Last night's minimum temperatures took all values between -3 degrees and +5 degrees." Show that it would suffice to say, "Both -3 degrees and +5 degrees occurred among last night's minimum temperatures." (Assume that temperature as a two-variable function of place and time is continuous.)

AoPS Community

	A.Csaszar
7	Does there exist a function $f(x, y)$ of two real variables that takes natural numbers as its values and for which $f(x, y) = f(y, z)$ implies $x = y = z$?
	A. Hajnal
8	Prove that in Euclidean ring R the quotient and remainder are always uniquely determined if and only if R is a polynomial ring over some field and the value of the norm is a strictly mono- tone function of the degree of the polynomial. (To be precise, there are two trivial cases: R can also be a field or the null ring.)
	E. Fried
9	If $\sum_{m=-\infty}^{+\infty} a_m < \infty$, then what can be said about the following expression?
	$\lim_{n \to \infty} \frac{1}{2n+1} \sum_{m=-\infty}^{+\infty} a_{m-n} + a_{m-n+1} + \dots + a_{m+n} .$
	P. Turan
10	For a real number x in the interval $(0, 1)$ with decimal representation
	$0.a_1(x)a_2(x)a_n(x),$
	denote by $n(x)$ the smallest nonnegative integer such that
	$\overline{a_{n(x)+1}a_{n(x)+2}a_{n(x)+3}a_{n(x)+4}} = 1966.$
	Determine $\int_0^1 n(x) dx$. (<i>abcd</i> denotes the decimal number with digits a, b, c, d .)

A. Renyi

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.