AoPS Community

Mikls Schweitzer 1966

www.artofproblemsolving.com/community/c3700
by ehsan2004

1 Show that a segment of length h can go through or be tangent to at most $2\lfloor h / \sqrt{2}\rfloor+2$ nonoverlapping unit spheres.
L.Fejes-Toth, A. Heppes

2 Characterize those configurations of n coplanar straight lines for which the sum of angles between all pairs of lines is maximum.

L.Fejes-Toth, A. Heppes

3 Let $f(n)$ denote the maximum possible number of right triangles determined by n coplanar points. Show that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{n^{2}}=\infty \text { and } \lim _{n \rightarrow \infty} \frac{f(n)}{n^{3}}=0
$$

P. Erdos

4 Let I be an ideal of the ring $\mathbb{Z}[x]$ of all polynomials with integer coefficients such that
a) the elements of I do not have a common divisor of degree greater than 0 , and
b) I contains of a polynomial with constant term 1.

Prove that I contains the polynomial $1+x+x^{2}+\ldots+x^{r-1}$ for some natural number r. Gy. Szekeres

5 A "letter $T^{\prime \prime}$ erected at point A of the x-axis in the $x y$-plane is the union of a segment $A B$ in the upper half-plane perpendicular to the x-axis and a segment $C D$ containing B in its interior and parallel to the x-axis. Show that it is impossible to erect a letter T at every point of the x-axis so that the union of those erected at rational points is disjoint from the union of those erected at irrational points.
A.Csaszar

6 A sentence of the following type if often heard in Hungarian weather reports: "Last night's minimum temperatures took all values between -3 degrees and +5 degrees." Show that it would suffice to say, "Both -3 degrees and +5 degrees occurred among last night's minimum temperatures." (Assume that temperature as a two-variable function of place and time is continuous.)

A.Csaszar

7 Does there exist a function $f(x, y)$ of two real variables that takes natural numbers as its values and for which $f(x, y)=f(y, z)$ implies $x=y=z$?

A. Hajnal

8 Prove that in Euclidean ring R the quotient and remainder are always uniquely determined if and only if R is a polynomial ring over some field and the value of the norm is a strictly monotone function of the degree of the polynomial. (To be precise, there are two trivial cases: R can also be a field or the null ring.)
E. Fried

9 If $\sum_{m=-\infty}^{+\infty}\left|a_{m}\right|<\infty$, then what can be said about the following expression?

$$
\lim _{n \rightarrow \infty} \frac{1}{2 n+1} \sum_{m=-\infty}^{+\infty}\left|a_{m-n}+a_{m-n+1}+\ldots+a_{m+n}\right|
$$

P. Turan

10 For a real number x in the interval $(0,1)$ with decimal representation

$$
0 . a_{1}(x) a_{2}(x) \ldots a_{n}(x) \ldots
$$

denote by $n(x)$ the smallest nonnegative integer such that

$$
\overline{a_{n(x)+1} a_{n(x)+2} a_{n(x)+3} a_{n(x)+4}}=1966 .
$$

Determine $\int_{0}^{1} n(x) d x$. ($\overline{a b c d}$ denotes the decimal number with digits a, b, c, d.)
A. Renyi

