AoPS Community

Mikls Schweitzer 1968

www.artofproblemsolving.com/community/c3702
by ehsan2004

1 Consider the endomorphism ring of an Abelian torsion-free (resp. torsion) group G. Prove that this ring is Neumann-regular if and only if G is a discrete direct sum of groups isomorphic to the additive group of the rationals (resp. , a discrete direct sum of cyclic groups of prime order). (A ring R is called Neumann-regular if for every $\alpha \in R$ there exists a $\beta \in R$ such that $\alpha \beta \alpha=\alpha$.)

E. Freid

2 Let $a_{1}, a_{2}, \ldots, a_{n}$ be nonnegative real numbers. Prove that

$$
\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} a_{i}^{n-1}\right) \leq n \prod_{i=1}^{n} a_{i}+(n-1)\left(\sum_{i=1}^{n} a_{i}^{n}\right)
$$

J. Suranyi

3 Let K be a compact topological group, and let F be a set of continuous functions defined on K that has cardinality greater that continuum. Prove that there exist $x_{0} \in K$ and $f \neq g \in F$ such that

$$
f\left(x_{0}\right)=g\left(x_{0}\right)=\max _{x \in K} f(x)=\max _{x \in K} g(x) .
$$

I. Juhasz

4 Let f be a complex-valued, completely multiplicative,arithmetical function. Assume that there exists an infinite increasing sequence N_{k} of natural numbers such that

$$
f(n)=A_{k} \neq 0 \text { provided } N_{k} \leq n \leq N_{k}+4 \sqrt{N_{k}} .
$$

Prove that f is identically 1 .

I. Katai

$5 \quad$ Let k be a positive integer, z a complex number, and $\varepsilon<\frac{1}{2}$ a positive number. Prove that the following inequality holds for infinitely many positive integers n :

$$
\left|\sum_{0 \leq l \leq \frac{n}{k+1}}\binom{n-k l}{l} z^{l}\right| \geq\left(\frac{1}{2}-\varepsilon\right)^{n}
$$

P. Turan

6 Let $\Psi=\langle A ; \ldots\rangle$ be an arbitrary, countable algebraic structure (that is, Ψ can have an arbitrary number of finitary operations and relations). Prove that Ψ has as many as continuum automorphisms if and only if for any finite subset A^{\prime} of A there is an automorphism $\pi_{A^{\prime}}$ of Ψ different from the identity automorphism and such that

$$
(x) \pi_{A^{\prime}}=x
$$

for every $x \in A^{\prime}$.

M. Makkai

7 For every natural number r, the set of r-tuples of natural numbers is partitioned into finitely many classes. Show that if $f(r)$ is a function such that $f(r) \geq 1$ and $\lim _{r \rightarrow \infty} f(r)=+\infty$, then there exists an infinite set of natural numbers that, for all r, contains r-triples from at most $f(r)$ classes. Show that if $f(r) \nrightarrow+\infty$, then there is a family of partitions such that no such infinite set exists.

P. Erdos, A. Hajnal

$8 \quad$ Let n and k be given natural numbers, and let A be a set such that

$$
|A| \leq \frac{n(n+1)}{k+1}
$$

For $i=1,2, \ldots, n+1$, let A_{i} be sets of size n such that

$$
\begin{gathered}
\left|A_{i} \cap A_{j}\right| \leq k(i \neq j), \\
A=\bigcup_{i=1}^{n+1} A_{i} .
\end{gathered}
$$

Determine the cardinality of A.

K. Corradi

9 Let $f(x)$ be a real function such that

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{e^{x}}=1
$$

and $\left|f^{\prime \prime}(x)\right| \leq c\left|f^{\prime}(x)\right|$ for all sufficiently large x. Prove that

$$
\lim _{x \rightarrow+\infty} \frac{f^{\prime}(x)}{e^{x}}=1
$$

P. Erdos

10 Let h be a triangle of perimeter 1 , and let H be a triangle of perimeter λ homothetic to h. Let h_{1}, h_{2}, \ldots be translates of h such that, for all i, h_{i} is different from h_{i+2} and touches H and h_{i+1} (that is, intersects without overlapping). For which values of λ can these triangles be chosen so that the sequence h_{1}, h_{2}, \ldots is periodic? If $\lambda \geq 1$ is such a value, then determine the number of different triangles in a periodic chain h_{1}, h_{2}, \ldots and also the number of times such a chain goes around the triangle H.
L. Fejes-Toth

11 Let A_{1}, \ldots, A_{n} be arbitrary events in a probability field. Denote by C_{k} the event that at least k of A_{1}, \ldots, A_{n} occur. Prove that

$$
\prod_{k=1}^{n} P\left(C_{k}\right) \leq \prod_{k=1}^{n} P\left(A_{k}\right)
$$

A. Renyi

