

AoPS Community

Mikls Schweitzer 1969

www.artofproblemsolving.com/community/c3703 by ehsan2004

1 Let *G* be an infinite group generated by nilpotent normal subgroups. Prove that every maximal Abelian normal subgroup of *G* is infinite. (We call an Abelian normal subgroup maximal if it is not contained in another Abelian normal subgroup.)

P. Erdos

2 Let $p \ge 7$ be a prime number, ζ a primitive *p*th root of unity, *c* a rational number. Prove that in the additive group generated by the numbers $1, \zeta, \zeta^2, \zeta^3 + \zeta^{-3}$ there are only finitely many elements whose norm is equal to *c*. (The norm is in the *p*th cyclotomic field.)

K. Gyory

3 Let f(x) be a nonzero, bounded, real function on an Abelian group G, $g_1, ..., g_k$ are given elements of G and $\lambda_1, ..., \lambda_k$ are real numbers. Prove that if

$$\sum_{i=1}^k \lambda_i f(g_i x) \ge 0$$

holds for all $x \in G$, then

$$\sum_{i=1}^k \lambda_i \ge 0.$$

A. Mate

4 Show that the following inequality hold for all $k \ge 1$, real numbers $a_1, a_2, ..., a_k$, and positive numbers $x_1, x_2, ..., x_k$.

$$\ln \frac{\sum_{i=1}^{k} x_i}{\sum_{i=1}^{k} x_i^{1-a_i}} \le \frac{\sum_{i=1}^{k} a_i x_i \ln x_i}{\sum_{i=1}^{k} x_i}.$$

L. Losonczi

5 Find all continuous real functions *f*, *g* and *h* defined on the set of positive real numbers and satisfying the relation

$$f(x+y) + g(xy) = h(x) + h(y)$$

for all x > 0 and y > 0.

Z. Daroczy

6 Let x_0 be a fixed real number, and let f be a regular complex function in the half-plane $\Re z > x_0$ for which there exists a nonnegative function $F \in L_1(-\infty, +\infty)$ satisfying $|f(\alpha + i\beta)| \le F(\beta)$ whenever $\alpha > x_0$, $-\infty < \beta < +\infty$. Prove that

$$\int_{\alpha-i\infty}^{\alpha+i\infty} f(z)dz = 0.$$

L. Czach

7 Prove that if a sequence of Mikusinski operators of the form $\mu e^{-\lambda s}$ (λ and μ nonnegative real numbers, *s* the differentiation operator) is convergent in the sense of Mikusinski, then its limit is also of this form.

E. Geaztelyi

8 Let f and g be continuous positive functions defined on the interval $[0, +\infty)$, and let $E \subset [0, +\infty)$ be a set of positive measure. Prove that the range of the function defined on $E \times E$ by the relation

$$F(x,y) = \int_0^x f(t)dt + \int_0^y g(t)dt$$

has a nonvoid interior.

L. Losonczi

9 In *n*-dimensional Euclidean space, the union of any set of closed balls (of positive radii) is measurable in the sense of Lebesgue.

A. Csaszar

10 In *n*-dimensional Euclidean space, the square of the two-dimensional Lebesgue measure of a bounded, closed, (two-dimensional) planar set is equal to the sum of the squares of the measures of the orthogonal projections of the given set on the *n*-coordinate hyperplanes.

L. Tamassy

11 Let $A_1, A_2, ...$ be a sequence of infinite sets such that $|A_i \cap A_j| \le 2$ for $i \ne j$. Show that the sequence of indices can be divided into two disjoint sequences $i_1 < i_2 < ...$ and $j_1 < j_2 < ...$ in such a way that, for some sets E and F, $|A_{i_n} \cap E| = 1$ and $|A_{j_n} \cap F| = 1$ for n = 1, 2, ...

AoPS Community

P. Erdos

12 Let *A* and *B* be nonsingular matrices of order *p*, and let ξ and η be independent random vectors of dimension *p*. Show that if ξ , η and $\xi A + \eta B$ have the same distribution, if their first and second moments exist, and if their covariance matrix is the identity matrix, then these random vectors are normally distributed.

B. Gyires

AOPSOnline AOPSAcademy AOPS