AoPS Community

Mikls Schweitzer 1969

www.artofproblemsolving.com/community/c3703
by ehsan2004

1 Let G be an infinite group generated by nilpotent normal subgroups. Prove that every maximal Abelian normal subgroup of G is infinite. (We call an Abelian normal subgroup maximal if it is not contained in another Abelian normal subgroup.)

P. Erdos

2 Let $p \geq 7$ be a prime number, ζ a primitive p th root of unity, c a rational number. Prove that in the additive group generated by the numbers $1, \zeta, \zeta^{2}, \zeta^{3}+\zeta^{-3}$ there are only finitely many elements whose norm is equal to c. (The norm is in the p th cyclotomic field.)

K. Gyory

3 Let $f(x)$ be a nonzero, bounded, real function on an Abelian group G, g_{1}, \ldots, g_{k} are given elements of G and $\lambda_{1}, \ldots, \lambda_{k}$ are real numbers. Prove that if

$$
\sum_{i=1}^{k} \lambda_{i} f\left(g_{i} x\right) \geq 0
$$

holds for all $x \in G$, then

$$
\sum_{i=1}^{k} \lambda_{i} \geq 0
$$

A. Mate

4 Show that the following inequality hold for all $k \geq 1$, real numbers $a_{1}, a_{2}, \ldots, a_{k}$, and positive numbers $x_{1}, x_{2}, \ldots, x_{k}$.

$$
\ln \frac{\sum_{i=1}^{k} x_{i}}{\sum_{i=1}^{k} x_{i}^{1-a_{i}}} \leq \frac{\sum_{i=1}^{k} a_{i} x_{i} \ln x_{i}}{\sum_{i=1}^{k} x_{i}}
$$

L. Losonczi

5 Find all continuous real functions f, g and h defined on the set of positive real numbers and satisfying the relation

$$
f(x+y)+g(x y)=h(x)+h(y)
$$

for all $x>0$ and $y>0$.

Z. Daroczy

6 Let x_{0} be a fixed real number, and let f be a regular complex function in the half-plane $\Re z>x_{0}$ for which there exists a nonnegative function $F \in L_{1}(-\infty,+\infty)$ satisfying $|f(\alpha+i \beta)| \leq F(\beta)$ whenever $\alpha>x_{0},-\infty<\beta<+\infty$. Prove that

$$
\int_{\alpha-i \infty}^{\alpha+i \infty} f(z) d z=0
$$

L. Czach

$7 \quad$ Prove that if a sequence of Mikusinski operators of the form $\mu e^{-\lambda s}$ (λ and μ nonnegative real numbers, s the differentiation operator) is convergent in the sense of Mikusinski, then its limit is also of this form.

E. Geaztelyi

$8 \quad$ Let f and g be continuous positive functions defined on the interval $[0,+\infty)$, and let $E \subset$ $[0,+\infty)$ be a set of positive measure. Prove that the range of the function defined on $E \times E$ by the relation

$$
F(x, y)=\int_{0}^{x} f(t) d t+\int_{0}^{y} g(t) d t
$$

has a nonvoid interior.

L. Losonczi

9 In n-dimensional Euclidean space, the union of any set of closed balls (of positive radii) is measurable in the sense of Lebesgue.
A. Csaszar

10 In n-dimensional Euclidean space, the square of the two-dimensional Lebesgue measure of a bounded, closed, (two-dimensional) planar set is equal to the sum of the squares of the measures of the orthogonal projections of the given set on the n-coordinate hyperplanes.

L. Tamassy

11 Let A_{1}, A_{2}, \ldots be a sequence of infinite sets such that $\left|A_{i} \cap A_{j}\right| \leq 2$ for $i \neq j$. Show that the sequence of indices can be divided into two disjoint sequences $i_{1}<i_{2}<\ldots$ and $j_{1}<j_{2}<\ldots$ in such a way that, for some sets E and $F,\left|A_{i_{n}} \cap E\right|=1$ and $\left|A_{j_{n}} \cap F\right|=1$ for $n=1,2, \ldots$.

P. Erdos

12 Let A and B be nonsingular matrices of order p, and let ξ and η be independent random vectors of dimension p. Show that if ξ, η and $\xi A+\eta B$ have the same distribution, if their first and second moments exist, and if their covariance matrix is the identity matrix, then these random vectors are normally distributed.
B. Gyires

